首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   1篇
污染及防治   1篇
  2018年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Antoine Ghauch   《Chemosphere》2008,72(2):328-331
The following comments are proposed to clarify some related issues on the use of zero valent iron micrometric particles for the treatment of a thiobencarb pesticide solution published in a recent article by Nurul Amin et al., [Nurul Amin Md., Kaneco, S., Kato, T., Katsumata, H., Susuki, T., Otha, K., 2008. Removal of thiobencarb in aqueous solution by zero valent iron. Chemosphere 70 (3), 511–515], and discussed later by Chicgoua Noubactep.  相似文献   
2.
Thiobencarb, a thiocarbamate herbicide, is widely used to control weeds in rice paddies. Screening for highly efficient thiobencarb-degrading bacteria is important for the bioremediation of thiobencarb-contaminated environments. The aim of this study was to isolate and identify highly efficient thiobencarb-degrading bacteria and to identify the degradation pathway and the degrading properties. The thiobencarb-degrading strain was isolated using methods of microbiological acclimation and enrichment and was then identified using a 16S rRNA phylogenetic analysis. The degrading properties of the isolated bacterium were determined by single-factor experiments, and the degradation products were identified using gas chromatography-mass spectrometry (GC-MS). A thiobencarb-degrading strain T2, which can utilize thiobencarb as the sole source of carbon for energy and growth, was isolated from paddy soil. Strain T2 degraded more than 98.3% of 0.4 mmol/L of thiobencarb within 36 h. It was preliminarily identified as Bacillus sp. T2 according to the 16S rRNA gene analysis and from its morphological, physiological, and biochemical characteristics. The metabolic products of the thiobencarb degradation for strain T2 were identified as 4-chlorobenzyl mercaptan, 4-chlorobenzaldehyde, and 4-chlorobenzoic acid by the GC-MS. Based on metabolite identification, it was speculated that thiobencarb degradation in strain T2 was initiated by the hydrolysis of the thioester bond to produce 4-chlorobenzyl mercaptan, which was further oxidized to 4-chlorobenzaldehyde and 4-chlorobenzoic acid. The thiobencarb degradation that was initiated by the hydrolysis of the thioester bond by strain T2 is a new metabolic pathway, which provides valuable research material and reliable experimental data for revealing the metabolic process and mechanism of thiobencarb microbial degradation in soil. The strain Bacillus sp. T2 has a very high degradation efficiency, suggesting it is a good prospect for microbial remediation in thiobencarb-polluted environments. © 2018 Science Press. All rights reserved.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号