首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   1篇
污染及防治   2篇
社会与环境   1篇
  2010年   1篇
  2009年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
Column and batch experiments were conducted with sandstone and ground water samples to investigate oxidation of uraninite precipitated by microbially mediated reduction of U(VI), a contaminant in ground water beneath a uranium mill tailings site near Tuba City, AZ, USA. Uraninite precipitated together with mackinawite (FeS0.9) because Fe(III) from the sandstone and sulfate, another contaminant in the water were reduced together with U(VI). After completion of U(VI) reduction, experiments were conducted to find out whether uraninite is protected by mackinawite against reoxidation. Uncontaminated ground water from the same site, containing 7 mg/l of dissolved oxygen, was passed through the columns or mixed with sandstone in batch experiments. The results showed that small masses of uraninite, 0.1 μg/g of sandstone, are protected by mackinawite from reoxidation. Uraninite masses on the order of 0.1 μg/g correspond to U(VI) concentrations of 0.5 mg/l, typically encountered in uranium contaminated ground waters. Mackinawite is an effective buffer and is formed in sufficient quantity to provide long-term protection of uraninite. Uranium concentrations in ground water passed through the columns are too low (4 μg/l) to distinguish between dissolution and oxidative dissolution of uraninite. However, batch experiments showed that uraninite oxidation takes place.  相似文献   
2.
3.
Microbiological reduction of uranyl by sulfate reducing bacteria (SRB) has been proposed as a promising method for removal of radionuclide from groundwater. In this study, we examined the effect of two naturally occurring Fe(III) (hydr)oxides, hematite and goethite, on the bioreduction of U(VI) by a mixed culture of SRB via laboratory batch experiments. The biogenic precipitate from U(VI) bioreduction was determined using X-ray absorption near edge structure (XANES) analysis, showing a typical feature of uraninite (UO2). In the presence of either hematite or goethite-containing Fe(III) ranging from 10 to 30 mM, the reduction of U(VI) was retarded by both minerals and the retardatory effect was enhanced with increasing amount of Fe(III) (hydr)oxide. When exposed to a mixture of hematite and goethite with the total Fe(III) kept constant at 20 mM, the retardatory effect on U(VI) reduction by the minerals were directly correlated with the fraction of hematite present. A slow increase in U(VI) concentration was also found in all Fe(III) (hydr)oxide treatments after 10-13 days, accompanied by the release of Fe(II) into the solution. The presence of Fe(III) (hydr)oxide can cause the eventual incomplete bioreduction of U(VI). However, it was not the case for the control without minerals. When mixing biogenic uraninite with hematite or goethite without SRB, Fe(II) was also detected in the solution. These findings suggest that the U(VI) remobilization after 10~13 days may be due to reoxidation of the uraninite by the solid-phase Fe(III) (hydr)oxide.  相似文献   
4.
Low-temperature alteration reactions on uranium phases may lead to the mobilization of uranium and thereby poses a potential threat to humans living close to uranium-contaminated sites. In this study, the surface alteration of uraninite (UO2) and uranium tetrachloride (UCl4) in air atmosphere was studied by confocal laser scanning microscopy (CLSM) and laser-induced fluorescence spectroscopy using an excitation wavelength of 408 nm. It was found that within minutes the oxidation state on the surface of the uraninite and the uranium tetrachloride changed. During the surface alteration process U(IV) atoms on the uraninite and uranium tetrachloride surface became stepwise oxidized by a one-electron step at first to U(V) and then further to U(VI). These observed changes in the oxidation states of the uraninite surface were microscopically visualized and spectroscopically identified on the basis of their fluorescence emission signal. A fluorescence signal in the wavelength range of 415–475 nm was indicative for metastable uranium(V), and a fluorescence signal in the range of 480–560 nm was identified as uranium(VI). In addition, the oxidation process of tetravalent uranium in aqueous solution at pH 0.3 was visualized by CLSM and U(V) was fluorescence spectroscopically identified. The combination of microscopy and fluorescence spectroscopy provided a very convincing visualization of the brief presence of U(V) as a metastable reaction intermediate and of the simultaneous coexistence of the three states U(IV), U(V), and U(VI). These results have a significant importance for fundamental uranium redox chemistry and should contribute to a better understanding of the geochemical behavior of uranium in nature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号