首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
综合类   1篇
污染及防治   3篇
  2016年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Environmental estrogen-like compounds (i.e. xenoestrogens) are a variety of pollutants, ranging from synthetic to natural occurring molecules, that are found in surface and waste waters over a wide range of concentrations. In aquatic environment, the overall estrogenic activity is often due to the presence of a mixture of chemicals and their degraded products which can induce synergistic effects. Current strategies for monitoring estrogen-like chemicals are based on the use of a battery of in vivo and in vitro ecotoxicological tests. In this regard, the aim of the present work was to carry out a bio-monitoring study for testing estrogenicity of the Chienti river (Marche Region, Italy) by using both an E-screen and a vitellogenin (Vtg) induction assay in juvenile goldfish. Three sites were used for analysis, localized at the mouth (sampling point 1), in the middle (sampling point 2) and at the origin (sampling point 3) of Chienti river. For most of the water samples (i.e. samples collected at sampling points 2 and 3), clear estrogenic activity was detected in the E-screen assay suggesting different proliferation activities in function of the collecting site. In contrast, the Vtg ELISA demonstrated that water samples collected from each sampling point were estrogenic. Overall, we showed for the first time that the estrogenic activities in water samples from the Chienti river were significant in both in vivo and in vitro; we also observed a different sensitivity between bioassays.  相似文献   
2.
Beck IC  Bruhn R  Gandrass J 《Chemosphere》2006,63(11):1870-1878
In the present study, the yeast estrogen screen (YES) has been used to assess the estrogenic activity in surface waters of a coastal region in the German Baltic Sea. Solid-phase extraction using the copolymer Oasis HLB followed by a clean-up on silica was carried out on approximately 50-l water samples. From the final 400 μl extract volume, 100 μl aliquots were used for the measurement of estrogenic activity and for chemical analysis, which was performed by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). From 29 samples taken during two campaigns (2003 and 2004) at five different stations 27 samples showed an estrogenic response higher than 10%. The response in the YES was expressed as measured estradiol equivalents (EEQs), which were in the range of 0.01 (Darss Peninsula) to 0.82 ng/l (Inner Wismar Bay). Samples from stations located in inner coastal waters showed higher estrogenic activities than those from outer located stations. A comparison of measured estrogenicity (YES) and calculated estrogenicity (chemical analysis) showed significant differences, probably due to the presence of anti-estrogenic compounds and/or the estrogenic activity of unknown, not identified contaminants. The main contributors to the overall estrogenic activity were synthetic and natural hormones.  相似文献   
3.
GOAL, SCOPE, AND BACKGROUND: The xenoestrogens bisphenol A, 4-tert-octylphenol, and the technical isomer mixture of 4-nonylphenol (tech. 4-nonylphenol) belong to the group of chemicals which are called endocrine disrupters due to their property of causing hormonal dysfunctions in the endocrine system of organisms at very low concentrations. Bisphenol A, 4-tert-octylphenol, and the tech. 4-nonylphenol (mixture of isomers) were determined in water samples collected from the influent and effluent of two German wastewater treatment plants (WWTP) during a long-time sampling period from February 2003 till August 2005 to assess their occurrence and temporal variations in WWTPs. METHODS: The compounds were extracted and concentrated from water by solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). RESULTS: The influent concentrations were as follows: Bisphenol A < limit of detection of the method (< ldm)--12,205 ng L(-1), tech. 4-nonylphenol < ldm--10,186 ng L(-1), and 4-tert-octylphenol 39-1,495 ng L(-1). The measured effluent concentrations were lower with values in the range of < ldm--7,625 ng L(-1) for bisphenol A, < ldm--14,444 ng L(-1) for tech. 4-nonylphenol, and < ldm--392 ng L(-1) for 4-tert-octylphenol. All target compounds were largely eliminated during the wastewater treatment process. The elimination efficiency varied between 73% and 93%. DISCUSSION: All analytes show highly fluctuating influent concentrations with very high peak concentrations at particular sampling times. The variation of effluent concentrations is by far lower than the variation of influent concentrations. For tech. 4-nonylphenol, a significant temporal concentration variation has been detected with very high concentrations up to the microgram-per-liter level in the time from February 2003 till July 2003 and clearly decreasing concentrations in the time from June 2004 till August 2005. This corresponds well with the implementation of Directive 2003/53/EC (nonylphenol and nonylphenol ethoxylates in the European Union "may not be placed on the marked or used as a substance or constituent of preparations in concentrations equal or higher than 0.1% by mass") from January 2005 on. Bisphenol A is present in the effluent samples in a wide range of concentrations from below the detection limit to high concentrations up to the microgram-per-liter level. For 4-tert-octylphenol, no particular trend of concentration development has been observed. CONCLUSIONS: Combined SPE and GC-MS proved to be an efficient method to identify and quantify polar organic compounds in environmental samples. With respect to the concentrations measured in the present study, bisphenol A sometimes is the prominent compound in influent samples. Neither bisphenol A nor 4-tert-octylphenol or tech. 4-nonylphenol show seasonal variations. However, there was a significant general trend of decreasing concentrations of tech. 4-nonylphenol in influent and effluent samples from both WWTPs which probably reflects the implementing Directive 2003/53/EC. RECOMMENDATIONS AND PERSPECTIVES: Further research is needed to investigate whether the observed decrease of tech. 4-nonylphenol concentrations in German WWTPs since June 2004 will continue further on. The reason for the high effluent concentrations of bisphenol A in only a few samples has to be clarified in further research. The results from this study provide insight into the concentration development of the xenoestrogens bisphenol A, tech. 4-nonylphenol, and 4-tert-octylphenol in WWTPs in the time span between 2003 and 2005.  相似文献   
4.
Background, aim, and scope  Food consumption is an important route of human exposure to endocrine-disrupting chemicals. So far, this has been demonstrated by exposure modeling or analytical identification of single substances in foodstuff (e.g., phthalates) and human body fluids (e.g., urine and blood). Since the research in this field is focused on few chemicals (and thus missing mixture effects), the overall contamination of edibles with xenohormones is largely unknown. The aim of this study was to assess the integrated estrogenic burden of bottled mineral water as model foodstuff and to characterize the potential sources of the estrogenic contamination. Materials, methods, and results  In the present study, we analyzed commercially available mineral water in an in vitro system with the human estrogen receptor alpha and detected estrogenic contamination in 60% of all samples with a maximum activity equivalent to 75.2 ng/l of the natural sex hormone 17β-estradiol. Furthermore, breeding of the molluskan model Potamopyrgus antipodarum in water bottles made of glass and plastic [polyethylene terephthalate (PET)] resulted in an increased reproductive output of snails cultured in PET bottles. This provides first evidence that substances leaching from plastic food packaging materials act as functional estrogens in vivo. Discussion and conclusions  Our results demonstrate a widespread contamination of mineral water with xenoestrogens that partly originates from compounds leaching from the plastic packaging material. These substances possess potent estrogenic activity in vivo in a molluskan sentinel. Overall, the results indicate that a broader range of foodstuff may be contaminated with endocrine disruptors when packed in plastics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号