首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   7篇
  国内免费   51篇
安全科学   3篇
废物处理   1篇
环保管理   2篇
综合类   41篇
基础理论   58篇
污染及防治   29篇
评价与监测   1篇
社会与环境   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   4篇
  2013年   31篇
  2012年   10篇
  2011年   9篇
  2010年   4篇
  2009年   10篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
排序方式: 共有136条查询结果,搜索用时 31 毫秒
1.
活性碳纤维吸附CS2蒸气的热力学研究   总被引:1,自引:0,他引:1  
通过吸附热力学研究,计算出CS_2蒸气在活性碳纤维(ACF)上的吸附热、吸附功和吸附熵.结果表明,吸附属物理吸附范畴,所用吸附剂样品表面是不均匀的.  相似文献   
2.
镉胁迫对虾夷扇贝抗氧化防御系统的影响   总被引:1,自引:0,他引:1  
实验研究了虾夷扇贝在96 h的急性毒性效应,以及不同浓度Cd2+(0,0.005,0.025,0.050,0.150和0.300 mg/L)对虾夷扇贝内脏团超氧化物岐化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽-过氧化物酶(GSH-PX)活力的影响,以探讨其用于污染暴露的生物标记的可行性。结果表明:虾夷扇贝96 h的LC50为1.73 mg/L;其95%的置信区间是1.58~1.90 mg/L;安全浓度为0.0173 mg/L。酶活力:0.025 mg/L及以上的各实验组SOD活力先上升后下降,在第3 d时达到峰值,与对照组呈显著差异(P<0.05);处理第6 d,各浓度组SOD活力有所下降,到第9 d时受到抑制;CAT活力在处理0.5 d时,0.025mg/L0、.150 mg/L和0.300 mg/L三个浓度组均受到显著诱导(P<0.05),处理第6 d时,各实验组酶活力开始受到抑制。两种酶对实验设计的Cd2+浓度反应敏感,呈现出"诱导-抑制"规律,对海洋Cd2+早期污染具有指示作用。GSH-PX对Cd2+污染没有SOD和CAT那样敏感,GSH-PX的各个实验组与对照组相比差异均不显著,因而它作为对海洋Cd2+早期污染指示物的意义不大。  相似文献   
3.
三丁基锡(TBT)对罗非鱼两组织SOD和GSH的影响   总被引:2,自引:0,他引:2  
以雄性奥利亚罗非鱼(Oreochromis aureus)为试验材料,研究腹腔注射染毒三丁基锡(TBT)后鱼类肝脏和精巢超氧化物歧化酶(SOD)和谷胱甘肽(GSH)的变化(剂量分别为0、1 μg/kg、3 μg/kg、5 μg/kg、10 μg/kg).结果表明,雄性奥利亚罗非鱼肝脏和精巢中的SOD正常值分别为(42.04±2.55) U/mg prot和(27.70±2.34) U/mg prot,GSH的正常值分别为(243.87±5.63) mg/g prot和(154.84±4.66) mg/g prot,精巢组织低于肝脏组织;染毒后各处理组肝脏与精巢均高于对照组且差异极显著;随着注射剂量的增高,不同处理时间内两组织SOD活性和GSH的含量均先升高后降低,在3 μg/kg体重时都达到最高值,表明TBT对肝脏和精巢中SOD活性和GSH含量均具有一定的诱导激活作用.研究表明,TBT可以通过影响精巢中抗氧化防御系统对雄性生殖细胞造成伤害,并因此增加了破坏鱼类资源的风险.  相似文献   
4.
多溴联苯醚(PBDEs)是广泛存在于环境中的一种新型持久性有机污染物.四溴联苯醚同分异构体中的BDE-47是多溴联苯醚中最重要的单体之一.试验采用人工土壤培养法,通过亚急性试验,研究了在不同暴露时间阶段下,不同BDE-47剂量对赤子爱胜蚓(Eisenia fetida)抗氧化酶(过氧化氢酶CAT)、代谢酶(谷胱甘肽转移酶GST)以及二者基因表达的影响.结果表明,在暴露14 d和28 d时,CAT活性被诱导上升并且差异显著;GST活性变化差异不显著;CAT基因表达水平在第14 d时呈现抑制效应,在后续的第28 d和第42 d基因表达水平上调;GST基因表达水平整体呈现诱导效应,并且差异显著,随着暴露时间的增加,低毒处理组(10、50 mg·kg-1)的基因表达水平逐渐下调至低于对照组的水平,高毒处理组(100、200 mg·kg-1)的基因表达量仍高于对照组水平;在BDE-47的暴露试验中,CAT与GST活性及其基因表达水平两项指标对低毒处理组较高毒处理组更为敏感.  相似文献   
5.
AIM AND BACKGROUND: Earthworms have been studied as a readily available, easily maintainable and cheap test species for assessing chemical pollution, and may be an alternative to in vivo rodent bioassays. The current investigation aims to characterize detoxification enzymes in Eisenia fetida and stress response against two herbicides with different modes of action, namely, fenoxaprop and metolachlor. METHODS: Herbicides were applied to soil containing earthworms. Animals were then collected, sacrificed and shock-frozen. Extracted protein was analyzed for glutathione S-transferase (GST) activity using CDNB (1-chloro-2,4-dinitrobenzene), DCNB (1,2-dichloro-4-nitrobenzene), pNBC (p-nitrobenzylchloride), PNOBC (p-nitrobenz-o-ylchloride) and selected herbicides. GST isoenzymes were partially purified by affinity chromatography and molecular weights were estimated by SDS-PAGE. RESULTS: In E. fetida protein extracts, GST activity towards model compounds ranked as CDNB>DCNB>PNBOC>PNBC. Fluorodifen was not conjugated at all, but fenoxaprop and metolachlor were conjugated at low rates. Furthermore, the GST isoenzyme pattern changed during the incubation with herbicides, either due to stress or as a defense reaction. After incubation with monochlorobimane, a strong fluorescence of the intestinal tract and the intersegments was observed, indicating organ-specific GST induction. DISCUSSION: According to the author's knowledge, here, for the first time, evidence is presented that E. fetida GST are also capable of conjugating a wider range of xenobiotic substrates. Different forms of GST were observed and changes in GST isoforms due to the herbicide treatment were also noticed. GST conjugation rates varied between different herbicides used in this experiment. It might be assumed that herbicides may well be detoxified by earthworms, to a certain extent, but that they are also potent stress factors influencing the detoxification system of the animal. High doses or long exposure might lead to deleterious effects on earthworms and limit their survival rate. The use of the animals as bioindicators for herbicides and herbicide residues seems very promising, but is surely influenced by the lack of detoxification for some compounds. CONCLUSIONS: Conjugation of several xenobiotics with model substances and herbicides is proven in the earthworm E. fetida. However, E. fetida has only limited capabilities of detoxifying herbicidal compounds. Different isoforms of GST were involved and altered in their activity after treatment. RECOMMENDATIONS AND PERSPECTIVES: The accumulation of GS-conjugates and their determination via fluorescence microscopy is a quick and secure, additional marker for exposure that should be further developed to complement existing biotests. The described methods and endpoints might help to understand the complex reaction of earthworms towards herbicides and lead to an adapted test methodology.  相似文献   
6.
Background, Aim and Scope Numerous herbicides and xenobiotic organic pollutants are detoxified in plants to glutathione conjugates. Following this enzyme catalyzed reaction, xenobiotic GS-conjugates are thought to be compartmentalized in the vacuole of plant cells. In the present study, evidence is presented for long range transport of these conjugates in plants, rather than storage in the vacuole. To our knowledge this is the first report about the unidirectional long range transport of xenobiotic conjugates in plants and the exudation of a glutathione conjugate from the root tips. This could mean that plants possess an excretion system for unwanted compounds which give them similar advantages as animals. Materials and Methods: Barley plants (Hordeum vulgare L. cv. Cherie) were grown in Petri dishes soaked with tap water in the greenhouse. - Fluorescence Microscopy. Monobromo- and Monochlorobimane, two model xenobiotics that are conjugated rapidly in plant cells with glutathione, hereby forming fluorescent metabolites, were used as markers for our experiments. Their transport in the root could be followed sensitively with very good temporal and spatial resolution. Roots of barley seedlings were cut under water and the end at which xenobiotics were applied was fixed in an aperture with a thin latex foil and transferred into a drop of water on a cover slide. The cover slide was fixed in a measuring chamber on the stage of an inverse fluorescence microscope (Zeiss Axiovert 100). - Spectrometric enzyme assay. Glutathione S-transferase (GST) activity was determined in the protein extracts following established methods. Aliquots of the enzyme extract were incubated with 1-chloro-2,4-dinitrobenzene (CDNB), or monochlorobimane. Controls lacking enzyme or GSH were measured. - Pitman chamber experiments. Ten days old barley plants or detached roots were inserted into special incubation chambers, either complete with tips or decapitated, as well as 10 days old barley plants without root tips. Compartment A was filled with a transport medium and GSH conjugate or L-cysteine conjugate. Compartments B and C contained sugar free media. Samples were taken from the root tip containing compartment C and the amount of conjugate transported was determined spectro-photometrically. Results: The transport in roots is unidirectional towards the root tips and leads to exsudation of the conjugates at rates between 20 and 200 nmol min-1. The microscopic studies have been complemented by transport studies in small root chambers and spectroscopic quantification of dinitrobenzene-conjugates. The latter experiments confirm the microscopic studies. Furthermore it was shown that glutathione conjugates are transported at higher rates than cysteine conjugates, despite of their higher molecular weights. This observation points to the existence of glutathione specific carriers and a specific role of glutathione in the root. Discussion: It can be assumed that long distance transport of glutathione conjugates within the plant proceeds like GSH or amino acid transport in both, phloem and xylem. The high velocity of this translocation of the GS-X is indicative of an active transport. For free glutathione, a rapid transport-system is essential because an accumulation of GSH in the root tip inhibits further uptake of sulfur. Taking into account that all described MRP transporters and also the GSH plasmalemma ATPases have side activities for glutathione derivatives and conjugates, co-transport of these xenobiotic metabolites seems credible. - On the other hand, when GS-B was applied to the root tips from the outside, no significant uptake was observed. Thus it can be concluded that only those conjugates can be transported in the xylem which are formed inside the root apex. Having left the root once, there seems to be no return into the root vessels, probably because of a lack of inward directed transporters. Conclusions: Plants seem to possess the capability to store glutathione conjugates in the vacuole, but under certain conditions, these metabolites might also undergo long range transport, predominantly into the plant root. The transport seems dependent on specific carriers and is unidirectional, this means that xenobiotic conjugates from the rhizosphere are not taken up again. The exudation of xenobiotic metabolites offers an opportunity to avoid the accumulation of such compounds in the plant. Recommendations and Perspectives: The role of glutathione and glutathione related metabolites in the rhizosphere has not been studied in any detail, and only scattered data are available on interactions between the plant root and rhizosphere bacteria that encounter such conjugates. The final fate of these compounds in the root zone has also not been addressed so far. It will be interesting to study effects of the exuded metabolites on the biology of rhizosphere bacteria and fungi.  相似文献   
7.
巯基化合物在万寿菊镉解毒中的作用   总被引:2,自引:0,他引:2  
采用水培实验方法研究了万寿菊体内镉积累和解毒与巯基化合物含量的关系。万寿菊植株分别在镉浓度为0、0.1、0.5、2和8 mg/L的营养液中暴露7 d,测定了根、茎、叶中镉、非蛋白巯基(NPT)、半胱氨酸(Cys)、γ-谷氨酰半胱氨酸(γ-EC)、谷胱甘肽(GSH)和植物络合素(PCs)的含量。植物根、茎、叶中镉含量都随着镉暴露浓度的增加而增加。当溶液中镉浓度较低(0.1~2 mg/L)时,茎叶中NPT、PCs、Cys和γ-EC含量随着镉浓度增加而增大;当镉浓度较高(8 mg/L)时,茎叶中PCs含量迅速降低,GSH含量大幅度增高。在根部,这些巯基化合物的含量几乎不受镉处理影响,且含量较低。以上研究结果表明:PCs在万寿菊镉的解毒机制中发挥一定的作用,暴露于高浓度的镉,GSH比PCs起着更为重要的解毒作用。  相似文献   
8.
The protective effect of hydroxytyrosol (HT), a strong antioxidant compound from extra virgin olive oil, against TCDD induced toxicity was investigated in human peripheral blood mononuclear cells (PBMC). PBMC (1 × 106 cells mL−1) were divided into four groups and were incubated in a CO2 incubator (5% CO2) for 12 h with vehicle, TCDD (10 nM), TCDD + HT (10 nM + 100 μM) and HT alone (100 μM) respectively. To clarify the role of HT against TCDD induced cytotoxicity, oxidative stress and the levels of antioxidant enzymes were assessed. Incubation of PBMC with TCDD significantly decreased cell viability, catalase (CAT) and glutathione peroxidase (GPx) and increased the levels of superoxide dismutase (SOD), glutathione reductase (GR) and oxidative stress markers such as lipid peroxidation products (LPO), protein carbonyl content (PCC) and reactive oxygen species (ROS). Whereas, HT had an effective antioxidant property as observed by the increased cell viability, normalization of antioxidant enzymes and decreased levels of LPO, PCC and ROS in PBMC co-treated with HT and TCDD. Apoptosis detection and comet assay results shows that HT, by acting as an antioxidant, prevents the damage to DNA induced by TCDD. In addition light microscopic and histopathological observations revealed that the cells are apoptotic and degenerated during TCDD treatment, whereas cells showed intact morphology during co-treatment with HT. On the whole, the results reveal that HT exerts a promising antioxidant potential in protecting the PBMC against TCDD induced oxidative stress, which might be due to the presence of catechol moiety in its structure.  相似文献   
9.
The expression of glutathione S-transferase (GST) activity in Festuca arundinacea was investigated in response to the following herbicide safeners: benoxacor, cloquintocet-mexyl, fenchlorazol-ethyl, fenclorim, fluxofenim and oxabetrinil. All the above compounds enhanced the GST activity tested towards the “model” substrate 1-chloro-2,4-dinitrobenzene (CDNB). Assays of GST activity towards the herbicides terbuthylazine (N 2-tert-butyl-6-chloro-N 4-ethyl-1,3,5-triazine-2,4-diamine) and butachlor (N-butoxymethyl-2-chloro-2′,6′-diethylacetanilide) as substrates also showed the ability of the safeners to enhance the enzyme activity towards both these herbicides, with the exception of cloquintocet-mexyl for the enzyme activity towards butachlor. As a consequence of the above effects at a macro-scale level, decreased herbicide accumulation and persistence were ascertained in response to the addition of the safener benoxacor to both terbuthylazine and butachlor treatments. These results are discussed in terms of capacity of benoxacor to induce herbicide detoxification in Festuca arundinacea with a view to utilizing them in reducing herbicide pollution.  相似文献   
10.
Brassinosteroids (BRs) are involved in the amelioration of various biotic and abiotic stresses. With an aim to explore the role of BRs under heavy metal stress, plants of Brassica juncea L. were grown in pots. The plants were subjected to various concentrations of Nickel metal (0.0, 0.2, 0.4 and 0.6 mM) and harvested on 60th day in order to observe the expression of these hormones. The isolated BRs from the leaves of Brassica plants characterized by GC-MS include 24-Epibrassinolide (24-EBL), Castasterone, Dolicholide and Typhasterole. The effect of isolated 24-EBL was studied on Ni metal uptake and antioxidative defense system in 60 d old plants of Brassica. It was observed that 24-EBL significantly increased the activities of stress ameliorating enzymes and lowered the metal uptake in plants. This is the first report in B. juncea L. plants showing the expression of BRs under metal treatments and effect of the isolated 24-EBL on metal uptake and in oxidative stress management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号