首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
废物处理   1篇
环保管理   2篇
评价与监测   1篇
  2011年   1篇
  2009年   1篇
  2007年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
An interval-parameter fuzzy-stochastic semi-infinite mixed-integer linear programming (IFSSIP) method is developed for waste management under uncertainties. The IFSSIP method integrates the fuzzy programming, chance-constrained programming, integer programming and interval semi-infinite programming within a general optimization framework. The model is applied to a waste management system with three disposal facilities, three municipalities, and three periods. Compared with the previous methods, IFSSIP have two major advantages. One is that it can help generate solutions for the stable ranges of the decision variables and objective function value under fuzzy satisfaction degree and different levels of probability of violating constraints, which are informative and flexible for solution users to interpret/justify. The other is that IFSSIP can not only handle uncertainties through constructing fuzzy and random parameter, but also reflect dynamic features of the system conditions through interval function of time over the planning horizon. By comparing IFSSIP with interval-parameter mixed-integer linear semi-infinite programming and parametric programming, the IFSSIP method is more reasonable than others.  相似文献   
2.
A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk.  相似文献   
3.
Liu Y  Qin X  Guo H  Zhou F  Wang J  Lv X  Mao G 《Environmental management》2007,40(6):966-980
Lake areas in urban fringes are under increasing urbanization pressure. Consequently, the conflict between rapid urban development and the maintenance of water bodies in such areas urgently needs to be addressed. An inexact chance-constrained linear programming (ICCLP) model for optimal land-use management of lake areas in urban fringes was developed. The ICCLP model was based on land-use suitability assessment and land evaluation. The maximum net economic benefit (NEB) was selected as the objective of land-use allocation. The total environmental capacity (TEC) of water systems and the public financial investment (PFI) at different probability levels were considered key constraints. Other constraints included in the model were land-use suitability, governmental requirements on the ratios of various land-use types, and technical constraints. A case study implementing the system was performed for the lake area of Hanyang at the urban fringe of Wuhan, central China, based on our previous study on land-use suitability assessment. The Hanyang lake area is under significant urbanization pressure. A 15-year optimal model for land-use allocation is proposed during 2006 to 2020 to better protect the water system and to gain the maximum benefits of development. Sixteen constraints were set for the optimal model. The model results indicated that NEB was between $1.48 × 109 and $8.76 × 109 or between $3.98 × 109 and $16.7 × 109, depending on the different urban-expansion patterns and land demands. The changes in total developed area and the land-use structure were analyzed under different probabilities (q i ) of TEC. Changes in q i resulted in different urban expansion patterns and demands on land, which were the direct result of the constraints imposed by TEC and PFI. The ICCLP model might help local authorities better understand and address complex land-use systems and develop optimal land-use management strategies that better balance urban expansion and grassland conservation.  相似文献   
4.
Operational uncertainties create disincentives for use of recycled materials in metal alloy production. One that greatly influences remelter batch optimization is variation in the raw material composition, particularly for secondary materials. Currently, to accommodate compositional variation, firms commonly set production targets well inside the window of compositional specification required for performance reasons. Window narrowing, while effective, does not make use of statistical sampling data, leading to sub-optimal usage of recycled materials. This paper explores the use of a chance-constrained optimization method, which allows explicit consideration of statistical information on composition. The framework and a case study of cast and wrought production with available scrap materials are presented. Results show that it is possible to increase the use of recycled material without compromising the likelihood of batch errors, when using this method compared to conventional window narrowing. This benefit of the chance-constrained method grows with increase in compositional uncertainty and is driven by scrap portfolio diversification.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号