首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   3篇
  国内免费   26篇
废物处理   2篇
环保管理   10篇
综合类   85篇
基础理论   12篇
污染及防治   30篇
评价与监测   4篇
  2023年   2篇
  2022年   7篇
  2021年   11篇
  2020年   5篇
  2019年   5篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   10篇
  2012年   6篇
  2011年   8篇
  2010年   3篇
  2009年   8篇
  2007年   8篇
  2006年   9篇
  2005年   2篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
1.
反硝化聚磷一体化设备生产性实验研究   总被引:4,自引:0,他引:4  
反硝化聚磷一体化设备主要特点是在利用含反硝化聚磷菌的活性污泥在缺氧状态过量聚磷,在完成磷去除的同时进行反硝化。通过实验得出缺氧释磷在前30min内大量释放,60min以后甚微;反硝化吸磷在最初10几分钟内速率极大;吸磷与反硝化紧密相关;聚磷菌在释、聚磷时利用一定量的有机物。  相似文献   
2.
通过现场中试对水解过程有机物的降解和SS去除情况进行分析,并通过批量实验对比了水解前后污水的反硝化速率。结果表明:采用厌氧水解取代初沉池作为生物脱氮的预处理工艺,可以有效提高后续生物处理工艺的效率,并可补充一定量的反硝化碳源。  相似文献   
3.
全程自养脱氮工艺的研究   总被引:5,自引:0,他引:5  
以悬浮填料床作为全程自养脱氮反应器,用不含有机碳的合成氨氮废水进行反应器的启动。系统的氨氮和总氮去除率分别达80%和60%左右。通过批式实验对全程自脱氮做进一步的研究。结果表明,通过控制反应器中DO的浓度,可以控制氨氧化和反硝化的比率;当DO为0.8mg/L时,氨氮几乎完全转化为氮气,氨氧化和反硝化在此时达到了动态平衡;在低DO情况下,氨氮和亚硝氮同时存在,氨氮和总氮的转化率都大幅度的提高,说明氨氮可以亚硝氮为电子受体,在无外加有机碳源的情况下进行反硝化。  相似文献   
4.
Denitrification Distributions in Four Valley and Ridge Riparian Ecosystems   总被引:2,自引:0,他引:2  
/ Denitrification in riparian ecosystems can reduce the amount ofnitrogen transported from farm fields to streams. In this study, we examinedenitrification in four riparian ecosystems common to the Valley and Ridgephysiographic province in Pennsylvania, USA. The sites exhibit differentvegetation, are underlain by different rock types, and are downgradient offarm fields. Mean site denitrification rates ranging from 0.6 to 1.9 &mgr;gN/kg soil/day were measured using intact core incubation techniques. Thethree riparian sites covered with grass each exhibited greaterdenitrification rates than the wooded site. Denitrification rate wascorrelated with moisture content but not with nitrate-N or organic carboncontents. Denitrification rates were greatest near the soil surface and atpositions nearest the stream. Rates decreased uniformly with distance awayfrom the stream and also with depth in the soil for each site. While patternsof nitrate-N, moisture, and organic carbon content differ among the sites,their combined effects on denitrification support the observed, consistentdenitrification rate pattern.KEY WORDS: Denitrification; Riparian ecosystems  相似文献   
5.
为解决低C/N污水的脱氮问题,本实验自行研制开发了一种新型碳聚合物载体.对该载体进行低C/N污水的生物膜脱氮研究,考察了HRT、pH、DO、温度等因素对系统同步硝化反硝化脱氮效果的影响.结果表明:在C/N比为4、pH=8、DO=1 mg/L、HRT=6 h,T=24℃的条件下,氨氮及总氮的去除率分别可以达到90%和70...  相似文献   
6.
针对碳氮比小于7的污水,其碳源不能满足硝化与反硝化的要求这一问题,通过改变SBR工艺的运行方式、调解工艺参数等技术手段,使其能够达标处理此类工业废水,并通过某淀粉厂的工程实例进行了验证:采用改良的SBR工艺可以对低碳高氮污水进行有效的处理。  相似文献   
7.
• Fe(III) accepted the most electrons from organics, followed by NO3, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3 with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.  相似文献   
8.
We investigated the influence of elevated CO2 and O3 on soil N cycling within the soybean growing season and across soil environments (i.e., rhizosphere and bulk soil) at the Soybean Free Air Concentration Enrichment (SoyFACE) experiment in Illinois, USA. Elevated O3 decreased soil mineral N likely through a reduction in plant material input and increased denitrification, which was evidenced by the greater abundance of the denitrifier gene nosZ. Elevated CO2 did not alter the parameters evaluated and both elevated CO2 and O3 showed no interactive effects on nitrifier and denitrifier abundance, nor on total and mineral N concentrations. These results indicate that elevated CO2 may have limited effects on N transformations in soybean agroecosystems. However, elevated O3 can lead to a decrease in soil N availability in both bulk and rhizosphere soils, and this likely also affects ecosystem productivity by reducing the mineralization rates of plant-derived residues.  相似文献   
9.
The production of N2 gas by denitrification may lead to the appearance of a gas phase below the water table prohibiting the conservative transport of tracer gases required for groundwater dating. We used a two-phase flow and transport model (STOMP) to study the reliability of 3H/3He, CFCs and SF6 as groundwater age tracers under agricultural land where denitrification causes degassing. We were able to reproduce the amount of degassing (R2 = 69%), as well as the 3H (R2 = 79%) and 3He (R2 = 76%) concentrations observed in a 3H/3He data set using simple 2D models. We found that the TDG correction of the 3H/3He age overestimated the control 3He/3He age by 2.1 years, due to the accumulation of 3He in the gas phase. The total uncertainty of degassed 3H/3He ages of 6 years (± 2 σ) is due to the correction of degassed 3He using the TDG method, but also due to the travel time in the unsaturated zone and the diffusion of bomb peak 3He. CFCs appear to be subject to significant degradation in anoxic groundwater and SF6 is highly susceptible to degassing. We conclude that 3H/3He is the most reliable method to date degassed groundwater and that two-phase flow models such as STOMP are useful tools to assist in the interpretation of degassed groundwater age tracer data.  相似文献   
10.
Jäntti H  Hietanen S 《Ambio》2012,41(2):161-169
Primary production in the eutrophic Baltic Sea is limited by nitrogen availability; hence denitrification (natural transformation of nitrate to gaseous N2) in the sediments is crucial in mitigating the effects of eutrophication. This study shows that dissimilatory nitrate reduction to ammonium (DNRA) process, where nitrogen is not removed but instead recycled in the system, dominates nitrate reduction in low oxygen conditions (O2 <110 μM), which have been persistent in the central Gulf of Finland during the past decade. The nitrogen removal rates measured in this study show that nitrogen removal has decreased in the Gulf of Finland compared to rates measured in mid-1990s and the decrease is most likely caused by the increased bottom water hypoxia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号