首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   4篇
  国内免费   16篇
安全科学   6篇
废物处理   4篇
环保管理   26篇
综合类   56篇
基础理论   11篇
污染及防治   65篇
评价与监测   13篇
社会与环境   7篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   9篇
  2015年   6篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   21篇
  2010年   2篇
  2009年   20篇
  2008年   24篇
  2007年   12篇
  2006年   8篇
  2005年   4篇
  2004年   8篇
  2003年   4篇
  2002年   8篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
1.
Reversible double water in oil in water (W/O/W) emulsions were developed to contain subsurface hydrocarbon spills during their remediation using surfactant flushing. Double emulsions were prepared by emulsifying CaCl2 solutions in canola oil, and subsequently by emulsifying the W/O emulsions in aqueous sodium alginate solutions. The formation of double emulsions was confirmed with confocal and optical microscopy. The double emulsions reversed and gelled when mixed with the surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CPB). Gels can act as ‘emulsion locks’ to prevent spreading of the hydrocarbon plume from the areas treated with surfactant flushing, as shown in sand column tests. Shear rheology was used to quantify the viscoelastic moduli increase (gelation) upon mixing the double emulsion with SDS and CPB. SDS was more effective than CPB in gelling the double emulsions. CPB and SDS could adsorb at the interface between water and model hydrocarbons (toluene and motor oil), lowering the interfacial tension and rigidifying the interface (as shown with a Langmuir trough). Bottle tests and optical microscopy showed that SDS and CPB produced W/O and O/W emulsions, with either toluene or motor oil and water. The emulsification of motor oil and toluene in water with SDS and CPB facilitated their flow through sand columns and their recovery. Toluene recovery from sand columns was quantitated using Gas-Chromatography Mass-Spectroscopy (GC-MS). The data show that SDS and CPB can be used both for surfactant flushing and to trigger the gelation of ‘emulsion locks’. Ethanol also gelled the emulsions at 100 mL/L.  相似文献   
2.
Intent of this study was to explore the potential application of polymerin, the polymeric, dissolved organic matter fraction from olive oil wastewaters, in technologies aimed at remediating hydrophobic organic compounds (HOCs) point-source pollution. Phenanthrene binding with polymerin was investigated. Moreover, the effect of addition of micro and nanoscale aluminum oxides (Al2O3) was studied, as well as sorption of polymerin on the oxides. Phenanthrene binding capacity by polymerin was notably higher than the sorption capacities for both types of Al2O3 particles. Polymerin sorption on nanoparticles was nearly 100 times higher than microparticles. In a three-phase system, using microparticles, higher phenanthrene sorption was found by adding into water polymerin, oxides and phenanthrene simultaneously. In contrast, using nanoparticles, a considerable enhancement of phenanthrene sorption was shown by adding phenanthrene to a pre-formed and dried polymerin-oxide complex. These findings support the application of polymerin, especially associated with Al2O3 nanoparticles, in remediation of water contaminated with HOCs. This work highlights the significant role of nanoparticles.  相似文献   
3.
This study dealt with in situ removal of copper from sediments through an electrokinetic (EK) process driven by a galvanic cell. Iron (Fe) and carbon (C) were placed separately and connected with a conductive wire. Polluted sediments were put between them and water was filled above the sediments. The galvanic cell was thus formed due to the different electrode potentials of Fe and C. The cell could remove the pollutants in the sediments by electromigration and/or electroosmosis. Results showed that a weak voltage less than 1V was formed by the galvanic cell. The voltage decreased with the increase of time. A slight increase of sediment pH from the anode (Fe) to the cathode (C) was observed. The presence of supernatant water inhibited the variation of sediment pH because H(+) and OH(-) could diffuse into the water. The removal of copper was affected by the sediment pH and the distribution of electrolyte in sediment and supernatant water. Lower pH led to higher removal efficiency. More electrolyte in the sediment and/or less electrolyte in the supernatant water favored the removal of copper. The major removal mechanism was proposed on the basis of the desorption of copper from sediment to pore solution and the subsequent electromigration of copper from the anode to the cathode. The diffusion of copper from sediment to supernatant water was negligible.  相似文献   
4.
The Cr(VI) removal from simulative contaminated groundwater using zero-valent iron (Fe0) filings, Fe0 powder and nanoscale Fe0 in batch experimental mode was studied. Cr(VI) is a primary pollutant of some soils and groundwater. Zero-valent iron, an important natural reductant, could transform Cr(VI) to Cr(III) which is much less toxic and immobile. The Cr(VI) removal percentage was 87% at a metal to solution ratio of 6 g l−1 for commercial iron powder (200 mesh) in 120 min, and 100% Cr(VI) was removed when the metal to solution ratio was 10 g l−1. The results demonstrates that the Cr(VI) removal percentage was affected apparently by pH, the amount of Fe powder and the reaction temperature. The Cr(VI) removal percentage with nanoscale Fe0 was much higher than those with Fe0 filings or Fe0 powder at the same reaction time. Electrochemical analysis of the reaction process led to the conclusion that the Cr(VI) trended to form Cr(III) hydroxide under the reaction conditions. The kinetics analysis showed that Cr(VI) reduction by Fe0 could be described as a pseudo-first-order kinetics model.  相似文献   
5.
The practice of contaminant transport and remediation has shown significant progress in recent years. However, despite the significant progress made, remediation efforts are often delayed by extremely long breakthrough curve tails that render efforts to bring the level of contaminants below the regulatory standards inefficient. One hypothesis is that these long tails are due to the reservoir-like slow diffusive processes in soil micropore zones. This study compares the effects of micropores at macroscopic and microscopic levels and establishes a link between these approaches for validation and calibration purposes. The link between macroscopic and microscopic levels is established through comparisons and testing of the two models while incorporating appropriate scale and boundary effects. Despite the differences in conceptual approaches and simulation time, the two approaches rendered meaningful results. The link helps forecast the effects of micropore zone transport processes in the subsurface efficiently and thus allows development of numerical tools that could contribute towards more efficient remediation design.  相似文献   
6.
Even in the absence of mobilization of dense nonaqueous phase liquid (DNAPL), the microemulsion that forms when the surfactant solubilizes a dense contaminant such as trichloroethylene will be more dense than water and tends to migrate downward. This paper addresses the issue of migration with a new concept: surfactant enhanced aquifer remediation at neutral buoyancy. Laboratory results of surfactant remediation in two-dimensional model aquifers show that downward migration of microemulsion containing solubilized dense contaminants can be reduced to an acceptable level, even in the absence of capillary barriers in the aquifer. One model experiment was designed to exhibit a small degree of vertical migration and full capture of the microemulsion at the extraction well. The second experiment was designed to demonstrate the effect of large buoyancy forces that lead to excessive downward migration of the microemulsion. Density measurements of aqueous solutions containing sodium dihexyl sulfosuccinate surfactant, isopropanol, trichloroethylene, and sodium chloride are presented. A companion paper presents the results of the flow and transport calculations needed for this approach to surfactant flooding.  相似文献   
7.
A matrix of batch, column and two-dimensional (2-D) box experiments was conducted to investigate the coupled effects of rate-limited solubilization and layering on the entrapment and subsequent recovery of a representative dense NAPL, tetrachloroethylene (PCE), during surfactant flushing. Batch experiments were performed to determine the equilibrium solubilization capacity of the surfactant, polyoxyethylene (20) sorbitan monooleate (Tween 80), and to measure fluid viscosity, density and interfacial tension. Results of one-dimensional column studies indicated that micellar solubilization of residual PCE was rate-limited at Darcy velocities ranging from 0.8 to 8.2 cm/h and during periods of flow interruption. Effluent concentration data were used to develop effective mass transfer coefficient (Ke) expressions that were dependent upon the Darcy velocity and duration of flow interruption. To simulate subsurface heterogeneity, 2-D boxes were packed with layers of F-70 Ottawa sand and Wurtsmith aquifer material within 20-30 mesh Ottawa sand. A 4% Tween 80 solution was then flushed through PCE-contaminated boxes at several flow velocities, with periods of flow interruption. Effluent concentration data and visual observations indicated that both rate-limited solubilization and pooling of PCE above the fine layers reduced PCE recovery to levels below those anticipated from batch and column measurements. These experimental results demonstrate the potential impact of both mass transfer limitations and subsurface layering on the recovery of PCE during surfactant enhanced aquifer remediation.  相似文献   
8.
When steam is injected into soil containing a dense volatile non-aqueous phase liquid contaminant the DNAPL vaporized within the heated soil region condenses and accumulates ahead of the steam condensation front. If enough DNAPL accumulates, gravitational forces can overcome trapping forces allowing the liquid contaminant to flow downward. By injecting air with steam, a portion of the DNAPL vapor remains suspended in equilibrium with the air, decreasing liquid contaminant accumulation ahead of the steam condensation front, and thus reducing the possibility of downward migration. In this work, a one-dimensional theoretical model is developed to predict the injection ratio of air to steam that will prevent the accumulation of volatile DNAPLs. The contaminated region is modeled as a one-dimensional homogeneous porous medium with an initially uniform distribution of a single component contaminant. Mass and energy balances are combined to determine the injection ratio of air to steam that eliminates accumulation of the contaminant ahead of the steam condensation front, and hence reduces the possibility of downward migration. The minimum injection ratio that eliminates accumulation is defined as the optimum injection ratio. Example calculations are presented for three DNAPLs, carbon tetrachloride (CCl4), trichloroethylene (TCE), and perchloroethylene (PCE). The optimum injection ratio of air to steam is shown to depend on the initial saturation and the volatility of the liquid contaminant. Numerical simulation results are presented to validate the model, and to illustrate downward migration for ratios less than optimum. Optimum injection ratios determined from numerical simulations are shown to be in good agreement with the theoretical model.  相似文献   
9.
10.
In situ sequential treatment of a mixed contaminant plume   总被引:1,自引:0,他引:1  
Groundwater plumes often contain a mixture of contaminants that cannot easily be remediated in situ using a single technology. The purpose of this research was to evaluate an in situ treatment sequence for the control of a mixed organic plume (chlorinated ethenes and petroleum hydrocarbons) within a Funnel-and-Gate. A shallow plume located in the unconfined aquifer at Alameda Point, CA, was found to contain up to 218,000 μg/l of cis-1,2 dichloroethene (cDCE), 16,000 μg/l of vinyl chloride (VC) and <1000 μg/l of 1,1 dichloroethene (1,1 DCE), trans-1,2 dichloroethene (trans-1,2 DCE) and trichloroethene (TCE). Total benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations were <10,000 μg/l. Contaminated groundwater was funneled into a gate, 3.0 m wide, 4.5 m long and 6.0 m deep (keyed into the underlying aquitard) where treatment occurred. The initial gate segment consisted of granular iron, for the reductive dechlorination of the higher chlorinated ethenes. The second segment, the biosparge zone, promoted aerobic biodegradation of petroleum hydrocarbons and any remaining lesser-chlorinated compounds, stimulated by dissolved oxygen (DO) and carbon dioxide (CO2) additions via an in situ sparge system (CO2 was used to neutralize the high pH produced from reactions in the iron wall). Groundwater was drawn through the gate by pumping two wells located at the sealed, downgradient, end. Over a 4-month period an estimated 1350 g of cDCE flowed into the treatment gate and the iron wall removed 1230 g, or 91% of the mass. The influent mass of VC was 572 g and the iron wall removed 535 g, corresponding to 94% mass removal. The other chlorinated ethenes had significantly lower influent masses (3 to 108 g) and the iron wall removed the majority of the mass resulting in >96% mass removal for any of the compounds. In spite of these high removal percentages, laboratory column tests indicated that at these levels of chlorinated contaminants, surface saturation of the iron grains likely contributed to lower than expected reaction rates. In the biosparge zone, mass removal of cDCE appeared to occur predominantly by biodegradation (65%) with volatilization (35%) being an important secondary process. The dominant removal process for VC was volatilization (70%) although significant biodegradation was also indicated (30%). Laboratory microcosm results confirmed the potential for aerobic biodegradation of cDCE and VC. When average influent field concentrations for cDCE and VC were 220,000 and 46,000 μg/l, respectively, the sequential treatment unit removed 99.6% of the total mass and when the influent concentrations decreased to 26,000 and 19,000 μg/l for cDCE and VC, respectively, >99.9% removal within the treatment gate was attained. BTEX compounds were found to be significantly retarded in the iron treatment zone. Although they did eventually break through the granular iron, and into the gravel transition zone, none of these compounds was detected in the biosparge zone. No noticeable interferences between the anaerobic (reductive) and aerobic parts of the system occurred during testing. The results of this experiment show that in situ treatment sequences are viable, although further work is needed to optimize performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号