首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   1篇
综合类   1篇
评价与监测   4篇
  2016年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
In Maryland, U.S., an interim framework has recentlybeen developed for using biologically based thresholds, or `biocriteria', to assess the health of nontidal streams statewide at watershed scales. The evaluation of impairment is based on indices of biological integrity from the Maryland Biological Stream Survey (MBSS). We applied logistic regression to quantify how the biotic integrity of streams at a local scale is affected by cumulative effects resulting from catchment land uses, point sources, and nearby transmission line rights-of-way. Indicators for land use were developed from the remote sensing National Land Cover Data and applied at different scales. We determined that the risk of local impairment in nontidal streams rapidly increases with increased urban land use in the catchment area. The average likelihood of failing biocriteria doubled with every 10% points increment in urban land, thus an increase in urban land use from 0 to 20% quadruples the risk of impairment. For the basins evaluated in this study, catchments with more than 40–50% urban land use had greater than 80% probability of failing biocriteria, on average. Inclusion of rights-of-way and point sources in the model did not significantly improve the fit for this data set, most likely because of their low numbers. The overall results indicate that our predictive modeling approach can help pinpoint stream ecosystems experiencing or vulnerable to degradation.  相似文献   
2.
This study was undertaken to determine the importance of riparian buffers to stream ecology in agricultural areas. The original Maryland Biological Stream Survey (MBSS) data set was partitioned to represent agricultural sites in Maryland's Coastal Plain and Piedmont regions. ANOVA, multiple linear regression (MLR), and CART regression tree models were developed using riparian and site catchment landscape characteristics. MBSS data were both stratified by physiographic region and analyzed as a combined data set. All models indicated that land management at the site was not the controlling factor for fish IBIs (FIBI) at that site and, hence, using FIBI to evaluate site-scale factors would not be a prudent procedure. Measures of instream habitat and location in the stream network were the dominant explanatory factors for FIBI models. Both CART and MLR models indicated that forest buffers were influential on benthic IBIs (BIBI). Explanatory variables reflected instream conditions, adjacent landscape influence, and chemistry in the Coastal Plains sites, all of which are relatively site specific. However, for Piedmont sites, hydrologic factors were important, in addition to adjacent landscape influence, and chemistry. Both Coastal Plain and Piedmont CART models identified several hydrologic factors, emphasizing the dominant control of hydrology on the physical habitat index (PHI). Riparian buffers were a secondary influence on PHI in the Coastal Plain, but not in the Piedmont. Between 40% and 70% of the variation in FIBI, BIBI, and PHI was explained by the “easily obtainable” variables available from the MBSS data set. While these are empirical results specific to Maryland, the general findings are of use to other locations where the establishment of forest buffers is considered as an aquatic ecosystem restoration measure.  相似文献   
3.
U.S. EPA Region IX is supporting bioassessment programs in Arizona, California, Hawaii and Nevada using biocriteria program and Regional Environmental Monitoring and Assessment Program (R-EMAP) resources. These programs are designed to improve the state, tribal and regional ability to determine the status of water quality. Biocriteria program funds were used to coordinate with Arizona, California and Hawaii which resulted in these states establishing reference conditions and in developing biological indices. U.S. EPA Region IX has initiated R-EMAP projects in California and Nevada. These U.S. EPA Region IX sponsored programs have provided an opportunity to interact with the States and provide them with technical and management support. In Arizona, several projects are being conducted to develop the State's bioassessment program. These include the development of a rotational random monitoring program; a regional reference approach for macroinvertebrate bioassessments; ecoregion approach to testing and adoption of an alternate regional classification system; and development of warm-water and cold-water indices of biological integrity. The indices are projected to be used in the Arizona Department of Environmental Quality (ADEQ) 2000 water quality assessment report. In California, an Index of Biological Integrity (IBI) has been developed for the Russian River Watershed using resources from U.S. EPA's Non-point Source (NPS) Program grants. A regional IBI is under development for certain water bodies in the San Diego Regional Water Quality Control Board. Resources from the U.S. EPA Biocriteria program are being used to support the California Aquatic Bioassessment Workgroup (CABW) in conjunction with the California Department of Fish & Game (CDFG), and to support the Hawaii Department of Health (DoH) Bioassessment Program to refine biological metrics. In Nevada, R-EMAP resources are being used to create a baseline of aquatic information for the Humboldt River watershed. U.S. EPA Region IX is presently working with the Nevada Division of Environmental Protection (NDEP) to establish a Nevada Aquatic Bioassessment Workgroup. Future R-EMAP studies will occur in the Calleguas Creek watershed in Southern California, and in the Muddy and Virgin River watersheds in southern Nevada, and the Walker River watershed in eastern California and west-central Nevada.  相似文献   
4.
Data were collected from 60 boatable sites using an electrofishing design that permitted comparisons of the effects of designs and distances on fish assemblage metrics. Sites were classified a priori as Run-of-the-River (ROR) or Restricted Flow (RF). Data representing four different design options (i.e., 1000 and 2000 m for both single and paired banks) were extracted from the dataset and analyzed. Friedman tests comparing metric values among the designs detected significant differences for all richness metrics at both types of sites and for catch per unit effort and percent tolerant species at ROR sites. Richness metrics were generally higher for the two 2000-m designs than for the two 1000-m designs. When plotted against cumulative electrofishing distance, the percent change in metrics declined sharply within approximately 1000 m, after which metrics usually varied by less than 10%. These data demonstrate that designs electrofishing 1000 m of shoreline are sufficient for bioassessments on boatable rivers similar to those in this study, regardless of whether the shoreline is along a single bank or distributed equally among paired banks. However, at sites with depths greater than 4 m, it may be advisable to employ nighttime electrofishing or increase day electrofishing designs to 2000 m.The U.S. Governments right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   
5.
ABSTRACT: The US Environmental Protection Agency is currently developing guidance for assessing environmental impact using biocriteria within a regulatory framework. Of particular interest are statistical methods of design and analysis to test for impairment of biological assemblages in stream ecosystems associated with water pollution. Current recommendations emphasize frequentist statistical methods with the problem expressed as one of classical hypothesis testing. An empirical Bayes approach is proposed here as an alternative and applied for multi-site inference. The advantages of an empirical Bayes approach, in particular the substantive contribution of collateral information from nearby sites, are discussed in contrast to traditional methods that employ site-specific information only. The approach is illustrated in an application concerning trends in the Index of Biotic Integrity (IHI) for the Scioto River in Ohio.  相似文献   
6.
基于2009~2013年7个航次渤海湾天津段的大型底栖动物和水质、沉积物环境数据,结合国内外已有的研究结果,首次尝试采用AZTI海洋生物指数以及水质和沉积物质量确定参考点,同时采取标准化方法筛选生物指标,确定各指标的阈值分级标准,从而构建出生物完整性指数.取参考点生物完整性指数值的90%分位数作为基准值,得出该海域生物基准值为5.适用性验证结果表明,生物完整性指数能够较好地指示研究区受干扰的生态质量状况,较为敏感地响应营养盐及重金属压力,也适用于评价该区域的底栖生态质量状况.因此,采用生物完整性指数法来确定生物基准是合理可行的.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号