首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   4篇
  国内免费   37篇
安全科学   1篇
环保管理   1篇
综合类   15篇
基础理论   34篇
污染及防治   1篇
评价与监测   1篇
社会与环境   2篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2004年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
DEP (diethyl phthalate,邻苯二甲酸二乙酯)是一种在环境中普遍存在的具有潜在神经和生殖毒性的增塑剂,其会干扰环境生物的发育水平、运动行为及生化水平.以秀丽隐杆线虫的体长、体宽、头部摆动频率及生化指标作为测试终点,评估环境中DEP对秀丽隐杆线虫的生态毒理效应.在不同环境浓度(0、0.000 2、0.002、0.02、0.2、2 mg/L)的DEP溶液中,对秀丽隐杆线虫进行不同时间(24 h、72 h和10 d)的暴露试验.结果表明:①在不同浓度DEP溶液中暴露24 h后,秀丽隐杆线虫的发育水平均未受到显著影响(P>0.05).②在不同浓度DEP溶液中暴露72 h后,秀丽隐杆线虫的发育水平受到干扰.与对照组相比,在DEP浓度最高(2 mg/L)时,秀丽隐杆线虫体长下降了3.21%(P < 0.05);在DEP浓度为0.000 2 mg/L时,秀丽隐杆线虫的体宽呈上升趋势,且头部摆动频率明显加快了5.52%(P < 0.01),秀丽隐杆线虫的发育水平受到显著抑制.③在不同浓度DEP溶液中暴露10 d后,与对照组相比,秀丽隐杆线虫的体长、体宽和头摆频率均出现下降;在DEP浓度为2 mg/L时,秀丽隐杆线虫体内活性氧自由基、脂褐素和细胞凋亡水平累积均增长显著,出现氧化应激损伤.研究显示,不同环境浓度的DEP溶液会对秀丽隐杆线虫产生一定的毒性影响,且不同暴露时间和暴露浓度产生的毒性影响也存在一定差异.   相似文献   
2.
日本沼虾与秀丽白虾的营养生态位   总被引:3,自引:0,他引:3  
为科学评估虾类的营养关系及资源的保护,利用稳定同位素技术研究了2种淡水虾类在大型通江湖泊——洞庭湖和鄱阳湖中的营养生态位和生态宽幅大小.结果表明,日本沼虾与秀丽白虾的δ13C值呈显著差异,而δ15N值无明显差异.同时,由于营养状况及水文的差异,虾类同位素值的差异在2个湖泊中表现不同.日本沼虾的δ13C值范围比秀丽白虾大,频率分布相对集中在-25.0‰~-23.0‰区间,表明其摄食的食物来源更广,对某些饵料生物有所偏好.另外,日本沼虾与秀丽白虾的营养生态位重叠程度较大,表明二者的主要食物来源相同,在食物网中占据的营养级相近,存在着激烈的种间竞争.在鄱阳湖中,日本沼虾占有的营养生态位和生态宽幅大于秀丽白虾;而在洞庭湖的研究结果则相反,主要是由于采样区域生境的差异及人类活动干扰的程度不同所致.  相似文献   
3.
为明确老化过程对土壤外源三价锑〔Sb(Ⅲ)〕毒性的影响,结合土壤中Sb的化学分析和生物毒性测试,以模式生物秀丽隐杆线虫(Caenorhabditis elegans)为测试生物,研究经Sb(Ⅲ)处理后老化7和56 d的2种土壤(安徽黄棕壤和新疆灰漠土)中不同价态Sb浓度、可提取态Sb浓度以及对线虫生长、生育、繁殖毒性的变化. 结果表明:①经Sb(Ⅲ)处理后老化56 d的安徽黄棕壤和新疆灰漠土中Sb(Ⅴ)的占比均显著高于老化7 d的土壤,与安徽黄棕壤相比,新疆灰漠土中Sb(Ⅲ)能更快地转化为毒性较低的Sb(Ⅴ). ②相较经Sb(Ⅲ)处理后老化7 d的土壤,经56 d老化的安徽黄棕壤和新疆灰漠土中可提取态Sb浓度分别下降了9.3%~36.8%和3.3%~47.0%. ③经Sb(Ⅲ)处理后老化56 d的安徽黄棕壤和新疆灰漠土对线虫生长毒性的EC50(50%效应浓度)值较老化7 d的土壤分别提升1.7和2.3倍,对线虫生育毒性的EC50值分别提升1.1和2.4倍,对线虫繁殖毒性的EC50值分别提升1.2和1.9倍. 研究显示,老化过程可降低土壤中可提取态Sb浓度和毒性较高的Sb(Ⅲ)占比,导致外源Sb(Ⅲ)对线虫毒性的减弱,pH、有机质含量以及铁锰铝氧化物含量对土壤中Sb(Ⅲ)氧化和Sb吸附过程的影响导致外源Sb(Ⅲ)老化效应以及对线虫毒性的差异.   相似文献   
4.
张绪超  陈懿  胡蝶  赵力  王琳  吴敏 《中国环境科学》2019,39(6):2644-2651
为了评价生物炭的使用对生态系统,尤其是对土壤无脊椎动物的毒性影响,使用模式生物秀丽隐杆线虫(Caenorhabditis elegans,C.elegans)来评估生物炭的环境风险.观察了生物炭原样、生物炭颗粒物和生物炭浸提液对线虫神经行为学评价指标(身体摆动频率、相对运动长度、排泄间隔时间、碰触反应率和化学感知行为指数)的影响;并结合生物炭的理化性质、非金属元素组成和重金属元素含量以及环境持久性自由基(EPFRs)的强度,评估生物炭对线虫的生物毒性.结果显示,EPFRs信号强的生物炭和颗粒物对秀丽隐杆线虫有一定的毒物兴奋效应,EPFRs信号微弱的浸提液无显著性影响.因此,生物炭中的EPFRs对秀丽隐杆线虫有潜在的神经毒性作用.  相似文献   
5.
Among more than 75 variants of microcystin(MC),microcystin-LR(MC-LR) is one of the most common toxins.In this study,the feasibility of using Caenorhabditis elegans to evaluate MC-LR toxicity was studied.C.elegans was treated with MC-LR at different concentrations ranging from 0.1 to 80 μg/L.The results showed that MC-LR could reduce lifespan,delay development,lengthen generation time,decrease brood size,suppress locomotion behavior,and decreases hsp-16-2-gfp expression.The endpoints of generation time,brood...  相似文献   
6.
Apart from the liver disruption, embryotoxicity and genotoxicity, microcystin (MC)-LR also could cause neurotoxicity. Nematode Caenorhabditis elegans was explored as a model to study the neurotoxicity. In the present study, we provided evidence to indicate the neurotoxicity on chemotaxis to NaCl and diacetyl, and thermotaxis from MC-LR exposure to C. elegans. As a result, higher concentrations of MC-LR caused significantly severe defects of chemotaxis to NaC1 and diacetyl, and thermotaxis. The neurotoxicity on chemotaxis to NaCl and diacetyl, and thennotaxis from MC-LR exposure might be largely mediated by the damage on the corresponding sensory neurons (ASE, AWA, and AFD) and interneuron AIY. The expression levels of che-1 and odr-7 were significantly decreased (P<0.01) in animals exposed to MC-LR at concentrations lower than 10 μg/L, whereas the expression levels of ttx-1 and ttx-3 could be significantly (P<0.01) lowered in animals even exposed to 1 μg/L of MC-LR. Moreover, both the chemotaxis to NaCl and diacetyl and the thermotaxis were more significantly reduced m MC-LR exposed mutants of che-1(p674), odr-7(ky4), ttx-1(p767), and ttx-3(ks5) than those in exposed wild-type N2 animals at the same concentrations.  相似文献   
7.
为了探究重金属单独及联合暴露对秀丽隐杆线虫(Caenorhabditis elegans)繁殖的影响及其作用机制,采用96孔板液相暴露试验,以环境相关浓度(0.1~50.0 μg/L)的Cd、Hg、Pb暴露同步化处理秀丽隐杆线虫,24 h后统计其怀卵数及阴门畸形率,以及连续记录72 h内子一代秀丽隐杆线虫的个体数,最后利用2×2析因设计方差分析阐明重金属的两两联合作用模式. 结果表明:与对照组相比,Cd、Hg、Pb单独及联合暴露对秀丽隐杆线虫的繁殖具有显著抑制作用,ρ(Cd)为50.0 μg/L、ρ(Hg)为10.0 μg/L、ρ(Pb)为50.0 μg/L暴露组秀丽隐杆线虫子一代数量分别降低了43.5%、33.8%、51.0%;Cd-Hg暴露组〔当ρ(Cd)、ρ(Hg)分别为50.0、10.0 μg/L时〕、Hg-Pb暴露组〔当ρ(Hg)、ρ(Pb)分别为10.0、50.0 μg/L时〕、Cd-Pb暴露组〔当ρ(Cd)、ρ(Pb)分别为50.0、50.0 μg/L时〕秀丽隐杆线虫子一代个体数分别降低了44.7%、61.0%、53.3%. 进一步研究发现,Cd、Hg、Pb单独及联合暴露会引起秀丽隐杆线虫子宫内受精卵数量降低以及产卵器阴门结构畸形率升高. 2×2析因设计方差分析结果发现,Cd、Hg、Pb两两联合暴露对秀丽隐杆线虫的繁殖表现为没有交互作用或者交互方式为拮抗. 研究显示,秀丽隐杆线虫子宫内怀卵数的降低是其子一代数量显著减少的主要原因,而阴门结构的损伤可能使产卵行为受损,从而进一步加剧重金属对秀丽隐杆线虫繁殖的抑制作用.   相似文献   
8.
研究了脊尾白虾(Exopalaemon carinicauda)在对苯并[a]芘(benzo[a]pyrene,BaP)的富集(15 d)、释放(15 d)过程中肝脏的生物标志物(EROD、GST、SOD、CAT、GPx、MDA)的响应,结果显示:在富集阶段,第1 d低浓度实验组(0.05 g/L)和高浓度实验组(0.45 g/L)六种生物标志物即均显著受到诱导(P0.05),诱导程度与暴露浓度成正相关,而后不同种类生物标志物呈现差异性的变化趋势,EROD继续上升并在第10 d后达到稳定状态,GST继续上升并在第10 d后受到抑制下降,SOD、CAT、GPx均受到抑制逐渐下降,且均在15 d时低于对照组水平,MDA呈现持续上升的趋势,直接反映了肝脏的氧化损伤程度。在释放阶段,低浓度实验组各生物标志物的恢复速度较高浓度实验组要快,且均能恢复到接近对照组水平(P0.05),高浓度实验组各生物标志物则均未能恢复到对照组水平(P0.05)。实验结果表明,脊尾白虾肝脏具有一定恢复能力,各生物标志物对BaP暴露的敏感性具有一定差异,BaP暴露的浓度及时间是影响各生物标志物响应变化的主要因素。  相似文献   
9.
以脊尾白虾(Exopalaemon carinicauda)糠虾幼体为实验材料,研究底泥浸出液对抗氧化解毒酶和基因表达的影响。用长江口水域的底泥浸出液与过滤海水按等比例间距稀释成4个体积浓度水平(1∶4,1∶2,1∶1,1.5∶1),以过滤海水为对照组,每一个浓度组设3个平行样本,进行20 d的毒性实验。结果表明:实验进行20 d,底泥浸出液对糠虾幼体肌肉组织CAT酶活性有一定的诱导作用,浸出液浓度与CAT酶活性表现出正相关的剂量效应关系。实验开始10 d,不同浸出液胁迫下,GST酶活性均出现增加受到诱导,实验20 d后,GST酶活性下降受到抑制作用,但不同浸出液浓度胁迫下抑制和诱导效应关系不明显。虾类肌肉组织3种基因(CAT、GSTD和HSP70)表达量基本都表现为实验开始10 d时升高,而实验20 d后表达量下降,仅为10 d数值的百分之一左右,表明底泥浸出液对CAT、GSTD和HSP70的3种基因的mRNA转录水平表达在一定时间内有一定的诱导作用,但胁迫时间过长时,则产生较明显的抑制作用。  相似文献   
10.
随着纳米科技与工业的高速发展,大量的纳米材料被广泛应用并最终汇聚到土壤环境中,对土壤生态和人体健康造成潜在影响。由于土壤生物具有多样性,选择具有代表性、敏感性并便于获取的土壤模式生物作为实验受体进行纳米材料的生物安全评估及环境毒理效应研究尤为重要。较为系统地回顾和总结了几种典型土壤模式生物的特点,为纳米材料毒理研究中受试生物的选择提供参考,在此基础上整理了大量基于典型土壤模式生物的纳米材料毒性研究资料,归纳了不同层次的研究方法,分析探索了纳米材料毒性机理,并展望了未来的研究重点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号