首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
污染及防治   3篇
社会与环境   1篇
  2011年   3篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
Shrubs and trees are expected to expand in the sub-Arctic due to global warming. Our study was conducted in Abisko, sub-arctic Sweden. We recorded the change in coverage of shrub and tree species over a 32– to 34-year period, in three 50 × 50 m plots; in the alpine-tree-line ecotone. The cover of shrubs and trees (<3.5 cm diameter at breast height) were estimated during 2009–2010 and compared with historical documentation from 1976 to 1977. Similarly, all tree stems (≥3.5 cm) were noted and positions determined. There has been a substantial increase of cover of shrubs and trees, particularly dwarf birch (Betula nana), and mountain birch (Betula pubescens ssp. czerepanovii), and an establishment of aspen (Populus tremula). The other species willows (Salix spp.), juniper (Juniperus communis), and rowan (Sorbus aucuparia) revealed inconsistent changes among the plots. Although this study was unable to identify the causes for the change in shrubs and small trees, they are consistent with anticipated changes due to climate change and reduced herbivory.  相似文献   
2.
Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in subarctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.  相似文献   
3.
Callaghan TV  Tweedie CE  Webber PJ 《Ambio》2011,40(6):555-557
Polar and alpine environments are changing rapidly due to increases in temperature, which are amplified in the Arctic, as well as changes in many local factors. The impacts on ecosystems and their function have potential consequences for local residents and the global community. Tundra areas are vast and diverse, and the knowledge of geographical variation in environmental and ecosystem change is limited to relatively few locations, or to remote sensing approaches that are limited mostly to the past few decades. The International Polar Year, IPY, provided a context, stimulus and timely opportunities for re-visiting old research sites and data sets to collate data on past changes, to pass knowledge from old to new generations of researchers and to document environmental characteristics of sites to facilitate detection and attribution of future changes. Consequently, the project “Retrospective and Prospective Vegetation Change in the Polar Regions: Back to the Future,” BTF, was proposed and endorsed as an IPY activity (project #512). With national funding support, teams of researchers re-visited former sites and data sets throughout the Arctic and some alpine regions. These efforts have amounted to a gamut of “BTF” studies that are collectively geographically expansive and disciplinary diverse. A selection of these studies are introduced and presented in the current issue together with a brief synthesis of their findings.  相似文献   
4.
Vegetation changes in Sahelian West Africa have been increasingly investigated since 1970 due to the catastrophic droughts in the early 1970s and 1980s and the following decades with below average precipitation. In most cases this was done by remote sensing and vegetation studies. In recent years, local knowledge of farmers and pastoralists about vegetation changes has been increasingly investigated. In this paper, information from different case studies in three West African countries (Burkina Faso, Niger, Senegal) was used to analyse and evaluate vegetation changes in the Sahel. In total, data were analysed from 25 villages, where the local people were asked to mention plant species and qualify their present occurrence compared to the past. In total, 111 woody species were mentioned as having changed compared to the past, of which 79% were classified as having decreased or disappeared. For each single location 8–59 different woody species were mentioned. In most cases, these are valuable species of socio-economic importance. Only 11% of the species was classified as increasing or new (0–12 were mentioned per location), the later being mainly exotic species. Ten percent were categorised differently among villages. A comparison of local knowledge from different locations provide regional scale information on endangered species and thereby crucial information for making insightful priorities for assisted regeneration, reforestation and conservation strategies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号