首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   4篇
环保管理   1篇
基础理论   13篇
污染及防治   1篇
灾害及防治   2篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2009年   2篇
  2007年   2篇
  1996年   1篇
  1995年   1篇
  1986年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
黑龙江省旱涝灾害农业气候指标及地理分布区划   总被引:1,自引:0,他引:1  
作者根据水分平衡原理,在考虑水分供应和植物蒸散的基础上,研究了符合黑龙江省实际的农作物旱涝灾动态指标,提出用月气象资料计算旱涝起止日期的模型和计算公式,并制作了黑龙江省春旱区划、春涝区划、夏涝区划和综合旱涝区划。  相似文献   
2.
In this study we analyzed and modelled spatial distribution of hard bottom benthic communities in the Lagoon of Venice, and used the model to derive functional response of these communities to changing environmental conditions.  相似文献   
3.
The allocation of land to biological diversity conservation competes with other land uses and the needs of society for development, food, and extraction of natural resources. Trade‐offs between biological diversity conservation and alternative land uses are unavoidable, given the realities of limited conservation resources and the competing demands of society. We developed a conservation‐planning assessment for the South African province of KwaZulu‐Natal, which forms the central component of the Maputaland–Pondoland–Albany biological diversity hotspot. Our objective was to enhance biological diversity protection while promoting sustainable development and providing spatial guidance in the resolution of potential policy conflicts over priority areas for conservation at risk of transformation. The conservation‐planning assessment combined spatial‐distribution models for 646 conservation features, spatial economic‐return models for 28 alternative land uses, and spatial maps for 4 threats. Nature‐based tourism businesses were competitive with other land uses and could provide revenues of >US$60 million/year to local stakeholders and simultaneously help meeting conservation goals for almost half the conservation features in the planning region. Accounting for opportunity costs substantially decreased conflicts between biological diversity, agricultural use, commercial forestry, and mining. Accounting for economic benefits arising from conservation and reducing potential policy conflicts with alternative plans for development can provide opportunities for successful strategies that combine conservation and sustainable development and facilitate conservation action. Negocios de Conservación y Planificación de la Conservación en un Sitio de Importancia para la Biodiversidad  相似文献   
4.
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on‐the‐ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land‐use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land‐use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape‐level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land‐use zoning in the province of Central Finland.  相似文献   
5.
Conservation success is contingent on assessing social and environmental factors so that cost‐effective implementation of strategies and actions can be placed in a broad social–ecological context. Until now, the focus has been on how to include spatially explicit social data in conservation planning, whereas the value of different kinds of social data has received limited attention. In a regional systematic conservation planning case study in Australia, we examined the spatial concurrence of a range of spatially explicit social values and land‐use preferences collected using a public participation geographic information system and biological data. We used Zonation to integrate the social data with the biological data in a series of spatial‐prioritization scenarios to determine the effect of the different types of social data on spatial prioritization compared with biological data alone. The type of social data (i.e., conservation opportunities or constraints) significantly affected spatial prioritization outcomes. The integration of social values and land‐use preferences under different scenarios was highly variable and generated spatial prioritizations 1.2–51% different from those based on biological data alone. The inclusion of conservation‐compatible values and preferences added relatively few new areas to conservation priorities, whereas including noncompatible economic values and development preferences as costs significantly changed conservation priority areas (48.2% and 47.4%, respectively). Based on our results, a multifaceted conservation prioritization approach that combines spatially explicit social data with biological data can help conservation planners identify the type of social data to collect for more effective and feasible conservation actions.  相似文献   
6.
The prosperity and well-being of human societies relies on healthy ecosystems and the services they provide. However, the biodiversity crisis is undermining ecosystems services and functions. Vultures are among the most imperiled taxonomic groups on Earth, yet they have a fundamental ecosystem function. These obligate scavengers rapidly consume large amounts of carrion and human waste, a service that may aid in both disease prevention and control of mammalian scavengers, including feral dogs, which in turn threaten humans. We combined information about the distribution of all 15 vulture species found in Europe, Asia, and Africa with their threats and used detailed expert knowledge on threat intensity to prioritize critical areas for conserving vultures in Africa and Eurasia. Threats we identified included poisoning, mortality due to collision with wind energy infrastructures, and other anthropogenic activities related to human land use and influence. Areas important for vulture conservation were concentrated in southern and eastern Africa, South Asia, and the Iberian Peninsula, and over 80% of these areas were unprotected. Some vulture species required larger areas for protection than others. Finally, countries that had the largest share of all identified important priority areas for vulture conservation were those with the largest expenditures related to rabies burden (e.g., India, China, and Myanmar). Vulture populations have declined markedly in most of these countries. Restoring healthy vulture populations through targeted actions in the priority areas we identified may help restore the ecosystem services vultures provide, including sanitation and potentially prevention of diseases, such as rabies, a heavy burden afflicting fragile societies. Our findings may guide stakeholders to prioritize actions where they are needed most in order to achieve international goals for biodiversity conservation and sustainable development.  相似文献   
7.
The outcome of analyses that prioritize locations for conservation on the basis of distributions of species, land cover, or other elements is influenced by the spatial resolution of data used in the analyses. We explored the influence of data resolution on prioritization of Finnish forests with Zonation, a software program that ranks the priority of cells in a landscape for conservation. We used data on the distribution of different forest types that were aggregated to nine different resolutions ranging from 0.1 × 0.1 km to 25.6 × 25.6 km. We analyzed data at each resolution with two variants of Zonation that had different criteria for prioritization, with and without accounting for connectivity and with and without adjustment for the effect on the analysis of edges between areas at the project boundary and adjacent areas for which data do not exist. Spatial overlap of the 10% of cells ranked most highly when data were analyzed at different resolutions varied approximately from 15% to 60% and was greatest among analyses with similar resolutions. Inclusion of connectivity or edge adjustment changed the location of areas that were prioritized for conservation. Even though different locations received high priority for conservation in analyses with and without accounting for connectivity, accounting for connectivity did not reduce the representation of different forest types. Inclusion of connectivity influenced most the outcome of fine-resolution analyses because the connectivity extents that we based on dispersal distances of typical forest species were small. When we kept the area set aside for conservation constant, representation of the forest types increased as resolution increased. We do not think it is necessary to avoid use of high-resolution data in spatial conservation prioritization. Our results show that large extent, fine-resolution analyses are computationally feasible, and we suggest they can give more flexibility to implementation of well-connected reserve networks.  相似文献   
8.
Abstract:  Aggregation of reserve networks is generally considered desirable for biological and economic reasons: aggregation reduces negative edge effects and facilitates metapopulation dynamics, which plausibly leads to improved persistence of species. Economically, aggregated networks are less expensive to manage than fragmented ones. Therefore, many reserve-design methods use qualitative heuristics, such as distance-based criteria or boundary-length penalties to induce reserve aggregation. We devised a quantitative method that introduces aggregation into reserve networks. We call the method the boundary-quality penalty (BQP) because the biological value of a land unit (grid cell) is penalized when the unit occurs close enough to the edge of a reserve such that a fragmentation or edge effect would reduce population densities in the reserved cell. The BQP can be estimated for any habitat model that includes neighborhood (connectivity) effects, and it can be introduced into reserve selection software in a standardized manner. We used the BQP in a reserve-design case study of the Hunter Valley of southeastern Australia. The BQP resulted in a more highly aggregated reserve network structure. The degree of aggregation required was specified by observed (albeit modeled) biological responses to fragmentation. Estimating the effects of fragmentation on individual species and incorporating estimated effects in the objective function of reserve-selection algorithms is a coherent and defensible way to select aggregated reserves. We implemented the BQP in the context of the Zonation method, but it could as well be implemented into any other spatially explicit reserve-planning framework .  相似文献   
9.
The frequently discussed gap between conservation science and practice is manifest in the gap between spatial conservation prioritization plans and their implementation. We analyzed the research‐implementation gap of one zoning case by comparing results of a spatial prioritization analysis aimed at avoiding ecological impact of peat mining in a regional zoning process with the final zoning plan. We examined the relatively complex planning process to determine the gaps among research, zoning, and decision making. We quantified the ecological costs of the differing trade‐offs between ecological and socioeconomic factors included in the different zoning suggestions by comparing the landscape‐level loss of ecological features (species occurrences, habitat area, etc.) between the different solutions for spatial allocation of peat mining. We also discussed with the scientists and planners the reasons for differing zoning suggestions. The implemented plan differed from the scientists suggestion in that its focus was individual ecological features rather than all the ecological features for which there were data; planners and decision makers considered effects of peat mining on areas not included in the prioritization analysis; zoning was not truly seen as a resource‐allocation process and not emphasized in general minimizing ecological losses while satisfying economic needs (peat‐mining potential); and decision makers based their prioritization of sites on site‐level information showing high ecological value and on single legislative factors instead of finding a cost‐effective landscape‐level solution. We believe that if the zoning and decision‐making processes are very complex, then the usefulness of science‐based prioritization tools is likely to be reduced. Nevertheless, we found that high‐end tools were useful in clearly exposing trade‐offs between conservation and resource utilization.  相似文献   
10.
The persistence of species in reserves depends in large part on the persistence of functional ecological interactions. Despite their importance, however, ecological interactions have not yet been explicitly incorporated into conservation prioritization methods. We develop here a general method for incorporating consumer–resource interactions into spatial reserve design. This method protects spatial consumer–resource interactions by protecting areas that maintain the connectivity between the distribution of consumers and resources. We illustrate our method with a conservation planning case study of a mammalian predator, American marten (Martes americana), and its two primary prey species, Red-backed vole (Clethrionomys rutilus) and Deer mouse (Peromyscus maniculatus). The conservation goal was to identify a reserve for marten that comprised 12% of a forest management unit in the boreal forest in Québec, Canada. We compared reserves developed using analysis variants that utilized different levels of information about predator and prey habitat distributions, species-specific connectivity requirements, and interaction connectivity requirements. The inclusion of consumer–resource interactions in reserve-selection resulted in spatially aggregated reserves that maintained local habitat quality for the species. This spatial aggregation was not induced by applying a qualitative penalty for the boundary length of the reserve, but rather was a direct consequence of modelling the spatial needs of the interacting consumer and resources. Our method for maintaining connectivity between consumers and their resources within reserves can be applied even under the most extreme cases of either complete spatial overlap or complete spatial segregation of consumer–resource distributions. The method has been made available via public software.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号