首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   1篇
环保管理   1篇
基础理论   5篇
污染及防治   3篇
评价与监测   3篇
社会与环境   3篇
  2017年   2篇
  2013年   3篇
  2009年   1篇
  2007年   1篇
  2006年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
One feature of climate change is the trends to earlier spring onset in many north temperate areas of the world. The timing of spring flowering and leafing of perennial plants is largely controlled by temperature accumulation; both temperature and phenological records illustrate changes in recent decades. Phenology studies date back over a century, with extensive databases existing for western Canada. Earlier spring flowering has been noted for many woody plants, with larger trends seen for species that develop at spring's start. Implications for ecosystems of trends to earlier spring arrival include changes in plant species composition, changes in timing and distribution of pests and disease, and potentially disrupted ecological interactions. While Alberta has extensive phenology databases (for species, years, and geographic coverage) for recent decades, these data cannot provide continuous ground coverage. There is great potential for phenological data to provide ground validation for satellite imagery interpretation, especially as new remote sensors are becoming available. Phenological networks are experiencing a resurgence of interest in Canada (www.plantwatch.ca) and globally, and linking these ground-based observations with the view from space will greatly enhance our capacity to track the biotic response to climate changes.  相似文献   
2.
3.
Spectral reflectance values of four canopy components (stems, buds, opening flowers, and postflowers of yellow starthistle (Centaurea solstitialis)) were measured to describe their spectral characteristics. We then physically combined these canopy components to simulate the flowering stage indicated by accumulated flower ratios (AFR) 10%, 40%, 70%, and 90%, respectively. Spectral dissimilarity and spectral angles were calculated to quantitatively identify spectral differences among canopy components and characteristic patterns of these flowering stages. This study demonstrated the ability of hyperspectral data to characterize canopy components, and identify different flowering stages. Stems had a typical spectral profile of green vegetation, which produced a spectral dissimilarity with three reproduction organs (buds, opening flowers, and postflowers). Quantitative differences between simulated flower stages depended on spectral regions and phenological stages examined. Using full-range canopy spectra, the initial flowering stage could be separated from the early peak, peak, and late flowering stages by three spectral regions, i.e. the blue absorption (around 480 nm) and red absorption (around 650 nm) regions and NIR plateau from 730 nm to 950 nm. For airborne CASI data, only the red absorption region and NIR plateau could be used to identify the flowering stages in the field. This study also revealed that the peak flowering stage was more easily recognized than any of the other three stages.  相似文献   
4.
Jatropha has gained interest as a potential biodiesel feedstock. Nevertheless, its oil production decreases significantly in frost- and drought-prone regions. In this study, we characterized the flowering pattern of Jatropha in Botswana in the 2014/2015 season. Extensive springtime pruning synchronized Jatropha regrowth in summer and effectively stimulated growth after frost damage. Flowering started in February 2015 and peaked in April and May. Wide variations in flowering frequency were observed among different Jatropha accessions. Trees flowering in February and March produced fruit in May, but most trees only flowered in April and May and did not yield fruit because of cold snaps. These observations suggested that harvesting seed before wintertime is the key to improve Jatropha production in the Botswana climate. This study highlighted the importance of inducing early flowering by developing new agricultural managements. These may include frost cover and sun shades to prevent stress-induced damage, canopy control by pruning, optimization of fertilization practice, and/or introduction of superior Jatropha varieties.  相似文献   
5.
The results of monitoring the dates of the onset of flowering and leaf budding in eight herbaceous and woody plant species and the first appearance of three insect species in the Il’men Reserve (1972–2005) were processed by means of regression and correlation analyses. No significant changes in test parameters were revealed in the majority of these species. Only two early spring plants, coltsfoot (Tussilago farfara L.) and goat willow (Salix caprea L.), showed a weak tendency toward earlier flowering in the 1980s and 1990s. This is explained primarily by the absence of any significant trends in spring and summer air temperatures in the study region over the observation period. On the other hand, interannual fluctuations in the dates of plant flowering and insect appearance were well manifested not only in early spring but also in late-spring species. These fluctuations proved to depend largely on spring temperatures: in years with early and warm springs, flowering and leaf budding in plants and the appearance of first individuals in insects were recorded on significantly earlier dates.  相似文献   
6.
Background Phytoextraction of contaminated soils by heavy metals can provide a great promise of commercial development. Although there are more than 400 species of hyperaccumulators found in the world, phytoremediation technology is rarely applied in field practice for remedying contaminated soils, partially due to low biomass and long growth duration for most of discovered hyperaccumulating plants. In order to enhance the metal-removing efficiency in a year, the two-phase planting countermeasure of phytoextraction by harvesting anthesis biomass was investigated on the basis of the newly found Cd-hyperaccumulator Rorippa globosa (Turcz.) Thell. with 107.0 and 150.1 mg/kg of the Cd accumulation in stems and leaves, respectively, when soil Cd added was concentrated to 25.0 mg/kg. Methods The field pot-culture experiment was used to observe the distribution property of R. globosa aboveground biomass and to examine characteristics of accumulating Cd by the plant at different growth stages. The concentration of Cd in plants and soils was determined using atomic absorption spectrophotometry (AAS). Results and Discussion The results indicated that the total dry stem and leaf biomass of R. globosa harvested at the flowering phase was up to 92.3% of that at its full maturity and the concentration of Cd in stems and leaves harvested at the flowering phase was up to 73.8% and 87.7% of that at the mature phase, respectively. The Cd-removing ratio by shoots of R. globosa harvested at the flowering phase was up to 71.4% of that at the mature phase. It was also found, by observing the growth duration of R. globosa, that the frostless period at the experiment site was twice as long as the growth time from the seedling-transplanted phase to the flowering phase of the hyperaccumulator. Conclusion R. globosa could be transplanted into contaminated soils twice in one year by harvesting the hyperaccumulator at its flowering phase based on climatic conditions of the site and traits of the plant growth. In this sense, the extraction efficiency of Cd in shoots of R. globosa increased 42.8% compared to that of at its single maturity when the plant was transplanted into contaminated soils after it had been harvested at its flowering phase and the plant accumulated Cd from soil at the same extraction ratio at its second flowering phase. Thus, the method of anthesis biomass regulation by the two-phase planting is very significant to increase the Cd-removing efficiency by phytoremediation used in practice over the course of a year. Recommendation and Outlook As for some hyperaccumulators that the growth duration from the seedling-transplanted phase to the flowering phase are short and the concentrations of heavy metals accumulated in their shoots at the flowering phase are high, the efficiency of phytoremediation can greatly be improved using the method of the two-phase planting.  相似文献   
7.
几个菜心品种硝酸盐累积差异的研究   总被引:1,自引:0,他引:1  
通过对7个菜心品种在2种氮源形态下进行水培试验,以及对植株和吸收液的分析测试,探讨菜心品种间的硝酸盐累积、氮素营养特性及养分吸收的差异,为制定硝酸盐调控措施和选育低硝酸盐菜心品种提供依据。  相似文献   
8.
9.
The morphological plasticity of the submerged macrophyte Potamogeton wrightii under different nutrient conditions and photoperiods was measured in a laboratory controlled experiment for 70 days in Japan. Six treatments were used in this experiment (3 × 2 factorial design with three replications) which consisted of three photoperiods and two nutrient conditions. Both photoperiod and nutrient condition had a pronounced effect on shoot and leaf morphology in P. wrightii. New shoot recruitment, and the length of main and new shoots gradually decreased with shortening photoperiod under both nutrient treatments. Plants under an 8 h photoperiod and high nutrient levels generated significantly more dead leaves (7.42 leaf·shoot?1) and decomposed shoots (1.3 shoots·pot?1) than plants under other treatments. Under short photoperiods (12 and 8 h) plants failed to produce flowering spikes in both nutrient conditions. In high nutrient conditions, P. wrightii produced shorter shoots, fewer leaves with shorter and narrower laminas, and smaller petioles compared with plants in the low nutrient condition. This may be adaptive under high nutrient conditions because it lowers foliar uptake and, thus, nutrient toxicity.  相似文献   
10.
不同生育期美人蕉-微生物修复富营养化水体   总被引:1,自引:0,他引:1  
生物修复水体富营养化,尤其是植物和微生物联合修复为目前水体富营养化治理方面的研究热点。不同生育期植物和微生物联合修复鲜见报道。研究不同生育期美人蕉和固定化微生物对富营养化水体的联合修复作用。结果表明,营养生长期和开花期美人蕉-微生物组处理前3天,富营养化水体中不同形态氮和磷浓度快速下降,用于美人蕉生长发育。从富营养化水体氮去除效果来看,营养生长期美人蕉-微生物联合处理去除效果略好于开花期,对磷的去除效果相反。美人蕉吸收氮元素为营养器官利用,其营养器官全氮增长量与生殖器官(花)形成显著差异(P<0.05)。花是美人蕉全磷含量最高、全磷增长量最高的器官,其全磷含量和全磷增长量与营养器官均形成显著差异(P<0.05)。实验结果表明,不同生育期美人蕉-微生物联合处理对氮和磷的吸收利用存在差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号