首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
安全科学   15篇
环保管理   30篇
综合类   21篇
基础理论   10篇
污染及防治   15篇
评价与监测   1篇
灾害及防治   7篇
  2023年   1篇
  2021年   9篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   15篇
  2015年   3篇
  2014年   1篇
  2013年   12篇
  2012年   5篇
  2011年   16篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1990年   2篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
Complex systems often experience a long period of incubation before accidents occur. Therefore, a proactive risk assessment is essential for process safety. The conventional job hazard analysis (JHA) method has been an effective tool to conduct a process risk assessment in the high-risk industrial field. However, the conventional JHA is inadequate for the proactive risk assessment since it is usually conducted during and before one specific operation process. Operations such as startup and maintenance are performed repeatedly on the lifecycle of a plant. Therefore, the risk reduction measures for the industrial process should include not only preventive actions obtained from the conventional JHA but also recovery ones. Resilience engineering (RE) has proven to be helpful for the recovery analysis of a complex system. The objective of this paper is to propose a proactive and comprehensive process risk assessment approach based on JHA and RE. The mechanism of applying RE to address operation process risk is illustrated. The integrated approach can provide guidelines to establish proactive risk reduction measures as well as maintain a low-risk level. Finally, a gas transmission startup process risk assessment case is presented to demonstrate its applicability.  相似文献   
2.
区域生态系统适应性管理概念、理论框架及其应用研究   总被引:8,自引:0,他引:8  
论述了生态系统适应性管理基本概念与生态系统适应循环,着重分析了生态系统恢复力范围、抗性、不稳定性与跨尺度影响。生态系统适应循环通常经历入侵、保持、破坏、调整四个阶段,前两个阶段的生态系统演替是可以预测的,而后两个阶段是复杂、难以预测的。文章提出了适应性区域生态系统管理的基本概念,并构建了其理论框架,并以三峡库区小江流域为例,对小江流域景观生态特征、区域生态胁迫进行了详细分析。在此基础上,提出要以水生生态安全为总目标,并围绕这一目标,进行流域各生态系统的恢复力辨识、生态系统适应性循环过程研究,从各系统恢复力属性特征出发,提出了具体的适应性管理方法与模式。  相似文献   
3.
We examined the principal effects of different information network topologies for local adaptive management of natural resources. We used computerized agents with adaptive decision algorithms with the following three fundamental constraints: (1) Complete understanding of the processes maintaining the natural resource can never be achieved, (2) agents can only learn by experimentation and information sharing, and (3) memory is limited. The agents were given the task to manage a system that had two states: one that provided high utility returns (desired) and one that provided low returns (undesired). In addition, the threshold between the states was close to the optimal return of the desired state. We found that networks of low to moderate link densities significantly increased the resilience of the utility returns. Networks of high link densities contributed to highly synchronized behavior among the agents, which caused occasional large-scale ecological crises between periods of stable and high utility returns. A constructed network involving a small set of experimenting agents was capable of combining high utility returns with high resilience, conforming to theories underlying the concept of adaptive comanagement. We conclude that (1) the ability to manage for resilience (i.e., to stay clear of the threshold leading to the undesired state as well as the ability to re-enter the desired state following a collapse) resides in the network structure and (2) in a coupled social–ecological system, the systemwide state transition occurs not because the ecological system flips into the undesired state, but because managers lose their capacity to reorganize back to the desired state. An erratum to this article can be found at .  相似文献   
4.
The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality—of rising system-wide turbulence—calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations.  相似文献   
5.
Building a community that is resilient to disasters has become one of the main goals of disaster management. Communities that are more disaster resilient often experience less impact from the disaster and reduced recovery periods afterwards. This study develops a methodology for constructing a set of indicators measuring Community Disaster Resilience Index (CDRI) in terms of human, social, economic, environmental, and institutional factors. In this study, the degree of community resilience to natural disasters was measured for 229 local municipalities in Korea, followed by an examination of the relationship between the aggregated CDRI and disaster losses, using an ordinary least squares (OLS) regression method and a geographically weighted regression (GWR) method. Identifying the extent of community resilience to natural disasters would provide emergency managers and decision-makers with strategic directions for improving local communities' resilience to natural disasters while reducing the negative impacts of disasters.  相似文献   
6.
Great Basin Land Management Planning Using Ecological Modeling   总被引:1,自引:1,他引:0  
This report describes a land management modeling effort that analyzed potential impacts of proposed actions under an updated Bureau of Land Management Resource Management Plan that will guide management for 20 years on 4.6 million hectares in the Great Basin ecoregion of the United States. State-and-transition models that included vegetation data, fire histories, and many parameters (i.e., rates of succession, fire return intervals, outcomes of management actions, and invasion rates of native and nonnative invasive species) were developed through workshops with scientific experts and range management specialists. Alternative restoration scenarios included continuation of current management, full fire suppression, wildfire use in designated fire use zones, wildfire use in resilient vegetation types only, restoration with a tenfold budget increase, no restoration treatments, and no livestock grazing. Under all the scenarios, cover of vegetation states with native perennial understory declined and was replaced by tree-invaded and weed-dominated states. The greatest differences among alternative management scenarios resulted from the use of fire as a tool to maintain native understory. Among restoration scenarios, only the scenario assuming a tenfold budget increase had a more desirable outcome than the current management scenario. Removal of livestock alone had little effect on vegetation resilience. Rather, active restoration was required. The predictive power of the model was limited by current understanding of Great Basin vegetation dynamics and data needs including statistically valid monitoring of restoration treatments, invasiveness and invasibility, and fire histories. The authors suggest that such computer models can be useful tools for systematic analysis of potential impacts in land use planning. However, for a modeling effort to be productive, the management situation must be conducive to open communication among land management agencies and partner entities, including nonprofit organizations.  相似文献   
7.
Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.  相似文献   
8.
Decision rules are the agreed-upon points at which specific management interventions are initiated. For marine mammal management under the U.S. Marine Mammal Protection Act (MMPA), decision rules are usually based on either a numeric population or biological-removal approach. However, for walrus and other ice-associated pinnipeds, the inability to reliably assess population numbers or biological removals highlights a significant gap in the MMPA, particularly when the Arctic environment is rapidly changing. We describe the MMPA's ecosystem-based management goals, and why managers have bypassed these goals in favor of an approach that depends upon numerical population assessment. We then revisit the statute's primary goals in light of current knowledge about the Pacific walrus ecosystem and new developments in environmental governance. We argue that to monitor and respond to changes in the walrus ecosystem, decision rules should be based on scientific criteria that depend less on the currently-impractical goal of accurately enumerating population size and trends, or removals from that population. Rather, managers should base decisions on ecological needs and observed ecological changes. To implement this approach would require an amendment to the MMPA that supports filling the gap in management with achievable decision rules. Alternatively, walrus and other ice-associated pinnipeds will remain largely unmanaged during a period of profound environmental change.  相似文献   
9.
One would hypothesize that the Common Fisheries Policy, as the umbrella framework for fisheries management in the EU would have the greatest impact on fishers’ communities across Europe. There are, however, biological, economic, social, and political factors, which vary among fishing communities that can affect how these communities react to changes. This paper explores the links between institutional arrangements and ecological dynamics in two European inshore fisheries socio-ecological systems, using a resilience framework. The Mediterranean small-scale fishers do not seem to have been particularly affected by the Common Fisheries Policy regulations but appear affected by competition with the politically strong recreational fishers and the invasion of the rabbit fish population. The inshore fishers along the East coast of Scotland believe that their interests are not as sufficiently protected as the interests of their offshore counterpart. Decisions and initiatives at global, EU, and sometimes national level, tend to take into account those fisheries sectors which have a national economic importance. A socio-ecological analysis can shift the focus from biological and economic aspects to more sustainable long-term delivery of environmental benefits linked to human wellbeing.  相似文献   
10.
Securing sustainable livelihood conditions and reducing the risk of outmigration in savanna ecosystems hosted in the tropical semiarid regions is of fundamental importance for the future of humanity in general. Although precipitation in tropical drylands, or savannas, is generally more significant than one might expect, these regions are subject to considerable rainfall variability which causes frequent periods of water deficiency. This paper addresses the twin problems of “drought and desertification” from a water perspective, focusing on the soil moisture (green water) and plant water uptake deficiencies. It makes a clear distinction between long‐term climate change, meteorological drought, and agricultural droughts and dry spells caused by rainfall variability and land degradation. It then formulates recommendations to better cope with and to build resilience to droughts and dry spells. Coping with desertification requires a new conceptual framework based on green‐blue water resources to identify hydrological opportunities in a sea of constraints. This paper proposes an integrated land/water approach to desertification where ecosystem management supports agricultural development to build social‐ecological resilience to droughts and dry spells. This approach is based on the premise that to combat desertification, focus should shift from reducing trends of land degradation in agricultural systems to water resource management in savannas and to landscape‐wide ecosystem management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号