首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Managing Excessive Methanogenesis During ERD/ISCR Remedial Action
Authors:Jim Mueller  J Greg Booth
Institution:1. Clemson University;2. Southeastern Missouri State University
Abstract:Excessive production of methane has been observed at some remediation sites following the addition of organic hydrogen donors such as (emulsified) oils/lecithin, sugars, and conventional carbon + zero‐valent iron (ZVI) amendments. This is due to the fact that methanogens are commonly the most ubiquitous indigenous microbes in anoxic aquifer settings, and, under enriched environmental conditions, methanogens replicate every one to two hours (whereas Dehalococcoides spp., e.g., double in 24–48 hr). Hence, methanogens often bloom and dominate the microbial ecosystem following the addition of remedial amendments, thereby liberating large amounts of methane gas. There are at least three important consequences of this response:
  1. By utilizing hydrogen, the methanogens compete with dechlorinating microbes, thus making inefficient use of the remedial amendment (just 20 ppm methane in groundwater represents an approximate 30 percent “waste” of added fermentable substrate (i.e., hydrogen donor)—this is a common and tangible detriment);
  2. Methanogens can methylate heavy metals and their rapid growth consumes alkalinity, while generating acidity, thereby facilitating multiple potential mechanisms for creating secondary contaminant issues (i.e., arsenic plumes); and
  3. Elevated methane concentrations can exceed current and pending regulations of <10 to <28 ppm methane in groundwater and/or 0.5 percent by volume methane in soil gas (e.g., 10 percent of the lower explosive limit) and/or indoor air (methane is flammable between 5 percent and 15 percent by volume) and this will induce migration of contaminant vapors potentially causing indoor air issues.
Considering the recent guidelines for indoor air published by the US Environmental Protection Agency, it is increasingly important to prevent excessive methanogenesis associated with remedial actions. From a regulatory perspective, public safety issues are paramount; from a property re‐use or real estate (brownfield) developers’ perspective, project delays are costly and can jeopardize an entire program. The use of antimethanogenic compounds as inhibitors of protein biosynthesis and the activity of enzyme systems unique to Archaea (i.e., methanogens) during in situ remedial action can improve contaminant removal while offering safer, more efficacious treatment, simply by impeding the methanogenic bacteria's ability to proliferate and out compete desired bacterial communities (e.g., Dehalococcoides spp.). ©2016 Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号