首页 | 本学科首页   官方微博 | 高级检索  
     


Selectivity of Nano Zerovalent Iron in In Situ Chemical Reduction: Challenges and Improvements
Authors:Dimin Fan  Denis M. O'Carroll  Daniel W. Elliott  Zhong Xiong  Paul G. Tratnyek  Richard L. Johnson  Ariel Nunez Garcia
Affiliation:1. Office of Land and Emergency Management of the USEPA;2. School of Civil and Environmental Engineering and Connective Waters Initiative, University of New South Wales, Sydney, Australia;3. Geosyntec Consultants, Inc;4. Haley & Aldrich, Inc.;5. Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, Oregon;6. OHSU/PSU School of Public Health (SPH);7. Department of Civil and Environmental Engineering, Western University
Abstract:Nano zerovalent iron (nZVI) is a promising remediation technology utilizing in situ chemical reduction (ISCR) to clean up contaminated groundwater at hazardous waste sites. The small particle size and large surface area of nZVI result in high reactivity and rapid destruction of contaminants. Over the past 20 years, a great deal of research has advanced the nZVI technology from bench‐scale tests to field‐scale applications. However, to date, the overall number of well‐characterized nZVI field deployments is still small compared to other alternative remedies that are more widely applied. Apart from the relatively high material cost of nZVI and questions regarding possible nanotoxicological side effects, one of the major obstacles to the widespread utilization of nZVI in the field is its short persistence in the environment due to natural reductant demand (NRD). The NRD for nZVI is predominantly due to reduction of water, but other reactions with naturally present oxidants (e.g., oxygen) occur, resulting in situ conditions that are reducing (high in ferrous iron phases and H2) but with little or no Fe(0). This article reviews the main biogeochemical processes that determine the selectivity and longevity of nZVI, summarizes data from prior (laboratory and field) studies on the longevity of various common types of nZVI, and describes modifications of nZVI that could improve its selectivity and longevity for full‐scale applications of ISCR. © 2016 Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号