首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design and fabrication of a laminated thermoforming tool with enhanced features
Authors:Daniel F Walczyk  Seungryeol Yoo
Institution:1. Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States;2. School of Mechanical Engineering, Korea University of Technology and Education, Byungchon Myon, Chonan, Chungnam 330-708, Republic of Korea
Abstract:Thermoforming is a popular manufacturing process for creating useful shapes out of heated thermoplastic sheets using a porous tool under differential pressure. For large, heavy-gauge parts, thermoforming tools are typically made by CNC machining a billet of material or sand casting from an inexpensive master pattern. Although these tooling methods are well established, it is difficult to incorporate enhanced tool functionality such as conformal cooling channels, embedded sensors, unimpeded vacuum channel placement, and customized thermal mass. Profiled Edge Laminas (PEL), a rapid tooling method based on profiling, assembling, and clamping an array of thick layers, is ideally suited for tools used for thermoforming large, heavy-gauge parts and requiring enhanced features. This paper describes how the PEL tooling method can be applied to the design and fabrication of a thermoforming tool and demonstrates the entire process through a case study. Tooling design guidelines and analytical models for predicting conformal channel and vacuum line performance are included. The ease with which multiple-zone conformal cooling/heating channels, vacuum lines, and temperature sensors are incorporated into the tool is also highlighted. Specifically, a 46-layer aluminum PEL tool clamped together with bolts is successfully designed, fabricated, and demonstrated for thermoforming a 0.3×0.4×0.4 m part made from a PVC/Acrylic blend based on the outlined method. The tool incorporates three independent cooling zones sealed by a polymer sealant, three embedded temperature sensors, and an elaborate matrix of vacuum channels. All tool features and the basic geometry were machined into each individual lamina in the same set-up by 2D abrasive waterjet machining, and the final tool surface was CNC-machined. The PEL tooling method is successfully applied to the manufacture of a large, heavy-gauge thermoformed part intended for production.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号