首页 | 本学科首页   官方微博 | 高级检索  
     

基于STL的海表面温度预测算法
引用本文:贺琪,查铖,宋巍,戚福明,郝增周,黄冬梅. 基于STL的海表面温度预测算法[J]. 海洋环境科学, 2020, 39(6): 918-925. DOI: 10.12111/j.mes.20190232
作者姓名:贺琪  查铖  宋巍  戚福明  郝增周  黄冬梅
作者单位:1.上海海洋大学 信息学院,上海 201306
基金项目:国家海洋局数字海洋科学技术重点实验室开放基金;上海市科委部分地方院校能力建设项目;上海市高校特聘教授(东方学者)项目;海洋大数据分析预报技术研发基金项目
摘    要:海表面温度是海洋科学研究中重要的参数之一,有效预测海表面温度对海洋灾害预警、海洋经济以及海洋生态环境研究具有重大意义。针对海表面温度具有周期性、持续性、非平稳性和非线性的特性,首先利用基于局部加权回归的周期趋势分解方法将原始海表面温度序列分解为周期项、趋势项和余项,挖掘海表面温度的潜在信息并去除序列中的随机噪音,再结合长短期记忆网络模型的优点,搭建神经网络来预测未来5天内的海表面温度。通过与其它模型的预测效果进行对比,实验结果表明,本文方法在预测海表面温度时具有较好的预测精度,能够实现海表面温度的有效预测。

关 键 词:时间序列   海表面温度预测   基于局部加权回归的周期趋势分解   长短期记忆网络
收稿时间:2019-10-08

Sea surface temperature prediction algorithm based on STL model
Qi HE,Cheng ZHA,Wei SONG,Fu-ming QI,Zeng-zhou HAO,Dong-mei HUANG. Sea surface temperature prediction algorithm based on STL model[J]. Marine Environmental Science, 2020, 39(6): 918-925. DOI: 10.12111/j.mes.20190232
Authors:Qi HE  Cheng ZHA  Wei SONG  Fu-ming QI  Zeng-zhou HAO  Dong-mei HUANG
Affiliation:1.Department of Information Technology, Shanghai Ocean University, Shanghai 201306, China
Abstract:Sea surface temperature is one of the important parameters in marine scientific research, and effective prediction of sea surface temperature is of great significance for marine disaster warning, marine economy and marine ecological environment. Aiming at the characteristics of periodicity, persistence, non-stationarity and non-linearity of sea surface temperature, firstly, the original sea surface temperature series is decomposed into periodic items, trend items and residual items by using the Seasonal-Trend decomposition procedure based on Loess to mine the potential information of sea surface temperature and remove the random noise in the sequence. Combining the advantages of the long short-term memory network model, a neural network is model to predict the sea surface temperature in the next five days. Comparing with the prediction effects of other methods, the experimental results show that the proposed method has better prediction accuracy when predicting sea surface temperature and can effectively predict sea surface temperature.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《海洋环境科学》浏览原始摘要信息
点击此处可从《海洋环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号