首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties
Authors:Jin Zhang  Bing Wang  Chuang Li  Hao Cui  Jianping Zhai  Qin Li
Affiliation:State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China;State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
Abstract:To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiVO4 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition and impregnation methods. The physical and photophysical properties of the composite have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Visible diffuse reflectance spectra. The XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and CeO2 crystalline phases. The XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in CeO2 and dispersed on the surface of BiVO4 to constitute a p-n heterojunction composite. The absorption threshold of the CeO2-BiVO4/FAC composite shifted to a longer wavelength in the UV-Vis absorption spectrum compared to the pure CeO2 and pure BiVO4. The composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. It was found that the 7.5 wt.% CeO2-BiVO4/FAC composite showed the highest photocatalytic activity for MB dye wastewater treatment.
Keywords:CeO2  BiVO4  Fly ash cenospheres (FACs)  Photocatalysis  Composites
本文献已被 维普 ScienceDirect 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号