首页 | 本学科首页   官方微博 | 高级检索  
     


Landscape-scale spatial population dynamics in human-impacted stream systems
Authors:Lowe Winsor H
Affiliation:(1) Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755-3577, USA, US
Abstract:The movement of individuals among populations can be critical in preventing local and landscape-scale species extinctions in systems exposed to human perturbation. Current understanding of spatial population dynamics in streams is largely limited to the reach scale and is therefore inadequate to address species response to spatially extensive perturbation. Using model simulations, I examined species response to perturbation in a drainage composed of multiple, hierarchically arranged stream-patches connected by in-stream and overland pathways of dispersal. Patch extinction probability, the proportion of initially occupied patches extinct after 25 years, was highly sensitive to the extent of species occupancy and perturbation within the drainage, longitudinal species distribution, perturbation decay rate and the covariance pattern of stochastic effects on colonization and extinction probabilities. Results of these simulations underscore the importance of identifying and preserving source populations and dispersal routes for stream species in human-impacted landscapes. They also highlight the vulnerability of headwater specialist taxa to anthropogenic perturbation, and the strong positive effect on species resilience of habitat rehabilitation when recolonization is possible. Efforts to conserve and manage stream species may be greatly improved by accounting for landscape-scale spatial population dynamics.
Keywords:: Spatial population dynamics   Landscape ecology   Stream   Dispersal   Extinction   Colonization   Metapopulation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号