首页 | 本学科首页   官方微博 | 高级检索  
     


Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation
Authors:Caixia Fan  Huiqing Hu  Lihong Wang  Qing Zhou  Xiaohua Huang
Affiliation:1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
2. School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
3. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
Abstract:In order to probe into the enzymological mechanism for the regulation of lanthanum chloride (LaCl3) on flavonoid synthesis in plants under enhanced ultraviolet-B (UV-B) radiation, the effects of LaCl3 (20 and 60 mg l?1) on the content of flavonoids as well as the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate?:?coenzyme A ligase (4CL), and chalcone synthase (CHS) in soybean seedlings under enhanced UV-B radiation (2.6 and 6.2 kJ m?2 day?1) were investigated. Enhanced UV-B radiation (2.6 and 6.2 kJ m?2 day?1) caused the increase in the content of flavonoids as well as the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of 20 mg l?1 LaCl3 also efficiently increased these indices, which promoted the flavonoid synthesis and provided protective effects for resisting enhanced UV-B radiation. On the contrary, the treatment of 60 mg l?1 LaCl3 decreased the content of flavonoids as well as the activities of C4H, 4CL, and CHS in soybean seedlings except increasing the activity of PAL, which were not beneficial to the flavonoid synthesis and provided negative effects for resisting enhanced UV-B radiation. In conclusion, enhanced UV-B radiation caused the increase in the flavonoid synthesis by promoting the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of LaCl3 could change flavonoid synthesis in soybean seedlings under enhanced UV-B radiation by regulating the activities of PAL, C4H, 4CL, and CHS, which is an enzymological mechanism for the regulation of LaCl3 on flavonoid synthesis in plants under enhanced UV-B radiation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号