首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation
Authors:Zhu Lizhong  Ruan Xiuxiu  Chen Baoliang  Zhu Runliang
Institution:

aDepartment of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028, China

Abstract:A novel strategy utilizing the phenyls interaction and the hydrophobic affinity of available siloxane surface in the interlayer of bentonite was proposed to improve the sorption capabilities of organobentonites for water soluble aromatic contaminants. A unique organobentonite (65BTMA) was synthesized by intercalating benzyltrimethylammonium cation (BTMA+) into the interlayer of a reduced-charge bentonite with cation exchange capacity (CEC) of 65 cmol kg?1. Phenol, aniline and toluene were used as model compounds of water soluble aromatic contaminants. Their respective removal efficiencies by 65BTMA were achieved at 83.3%, 89.2% and 97.3% at the initial concentration of 20 mg l?1. To reveal the sorption mechanism, sorption characteristics of aromatic contaminants to 65BTMA were compared with that of aliphatic contaminants in similar molecular size. And various organobentonites were prepared by combining TMA+ (tetramethylammonium), BTMA+, HTMA+ (heptyltrimethylammonium) and CTMA+ (cetyltrimethylammonium) with two bentonites (CEC = 108 and 65 cmol kg?1). To 65BTMA, sorption magnitudes of aromatic contaminants were much greater than that of aliphatic compounds with similar size; and dramatically higher than those to other organobentonites at low pollutant concentrations. These observations revealed that the strong phenyls interactions contributed significantly to sorb the aqueous soluble aromatic contaminants to 65BTMA (>90%), and which favored to design uniquely powerful sorbents.
Keywords:Organobentonite  Phenyls interaction  Siloxane surface  Aniline  Phenol  Toluene
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号