首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Zooplankton capture by two scleractinian corals,Madracis mirabilis andMontastrea cavernosa,in a field enclosure
Authors:K P Sebens  K S Vandersall  L A Savina  K R Graham
Institution:(1) Department of Zoology, University of Maryland, 20742 College Park, Maryland, USA;(2) Center for Environmental and Estuarine Studies, University of Maryland System, 21613 Cambridge, Maryland, USA;(3) Marine Science Center, Northeastern University, 01908 Nahant, Massachusetts, USA;(4) Present address: Massachusetts Division of Marine Fisheries, 01970 Gloucester, Massachusetts, USA;(5) Present address: OASIS Environmental Inc., 900 w. 5th Ave., 99501 Anchorage, Alaska, USA
Abstract:Capture of zooplankton by scleractinian corals has been noted for several species, yet quantitative information on rates of capture and differential capture by prey taxon has been lacking. We used field enclosures to examine prey capture for two coral species,Madracis mirabilis (Duchassaing and Michelotti) andMontastrea cavernosa (Linnaeus), on the north coast of Jamaica (Discovery Bay) in November 1989, February and March 1990, and January 1992.M. mirabilis has small polyps and a branching colony morphology (high surface/volume ratio), whereasM. cavernosa has large polyps and mounding colonies (low surface/volume ratio). Corals were isolated front potential prey, then were introduced into enclosures with enhanced zooplankton concentrations for 15- to 20-min feeding periods. Corals were fixed immediately after the experiment to prevent digestion, and coelenteron contents were examined for captured zooplankton. Plankton pumps were used to sample ambient zooplankton in the enclosures near the end of each run. Selectivity and capture rates were calculated for each prey taxon in each experiment; both indices were high for relatively uncommon large prey, and low for copepods, which were often the most common items in the plankton. Sizes of zooplankton captured by both species were generally larger than those available considering all prey taxa combined, but were almost the same for both coral species, even though the corals' polyp sizes are very different. This occurred primarily because small copepods, with low capture rates, dominated most plankton samples. For specific prey species, or group of species, there were few significant differences in size between the prey available and the prey captured.M. mirabilis, with small polyps, also captured far more prey per unit coral biomass than didM. cavernosa, with much larger polyps. We hypothesize that the large differences in capture rate of prey taxa are related to escape or avoidance behavior by those potential prey, and to the mechanics of capture, rather than to any selectivity by the corals.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号