首页 | 本学科首页   官方微博 | 高级检索  
     


Magnetically recoverable Fe3O4@polydopamine nanocomposite as an excellent co-catalyst for Fe3+ reduction in advanced oxidation processes
Authors:Ling Fan  Jinliang Xie  Zhilin Zhang  Yaping Zheng  Dongdong Yao  Ting Li
Affiliation:Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University,Xi'an 710072, China;Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University,Xi'an 710072, China;Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University,Xi'an 710072, China;Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University,Xi'an 710072, China;Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University,Xi'an 710072, China;Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University,Xi'an 710072, China
Abstract:Advanced oxidation processes are widely applied to removal of persistent toxic substances from wastewater by hydroxyl radicals (·OH), which is generated from hydrogen peroxide (H2O2) decomposition. However, their practical applications have been hampered by many strict conditions, such as iron sludge, rigid pH condition, large doses of hydrogen peroxide and Fe2+, etc. Herein, a magnetically recyclable Fe3O4@polydopamine (Fe3O4@PDA) core-shell nanocomposite was fabricated. As an excellent reducing agent, it can convert Fe3+ to Fe2+. Combined with the coordination of polydopamine and ferric ions, the production of iron sludge is inhibited. The minimum concentration of hydrogen peroxide (0.2 mmol/L and Fe2+ (0.18 mmol/L)) is 150-fold and 100-fold lower than that of previous reports, respectively. It also exhibits excellent degradation performance over a wide pH range from 3.0 to 9.0. Even after the tenth recycling, it still achieves over 99% degradation efficiency with the total organic carbon degradation rate of 80%, which is environmentally benign and has a large economic advantage. This discovery paves a way for extensive practical application of advanced oxidation processes, especially in environmental remediation.
Keywords:Fenton-like catalysts  Magnetically reusable
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号