Abstract: | Spatio-temporal variability in settlement and recruitment, high mortality during the first life-history stages, and selection may determine the genetic structure of cohorts of long-lived marine invertebrates at small scales. We conducted a spatial and temporal analysis of the common Mediterranean Sea urchin Paracentrotus lividus to determine the genetic structure of cohorts at different scales. In Tossa de Mar (NW Mediterranean), recruitment was followed over 5 consecutive springs (2006–2010). In spring 2008, recruits and two-year-old individuals were collected at 6 locations along East and South Iberian coasts separated from 200 to over 1,100 km. All cohorts presented a high genetic diversity based on a fragment of mtCOI. Our results showed a marked genetic homogeneity in the temporal monitoring and a low degree of spatial structure in 2006. In 2008, coupled with an abnormality in the usual circulation patterns in the area, the genetic structure of the southern populations studied changed markedly, with arrival of many private haplotypes. This fact highlights the importance of point events in renewing the genetic makeup of populations, which can only be detected through analysis of the cohort structure coupling temporal and spatial perspectives. |