首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oil exposure in a warmer Arctic: potential impacts on key zooplankton species
Authors:Morten Hjorth  Torkel Gissel Nielsen
Institution:1.Department of Marine Ecology, National Environmental Research Institute,Aarhus University,Roskilde,Denmark;2.National Institute of Aquatic Resources, Section of Oceanecology and Climate,Technical University of Denmark,Charlottenlund,Denmark
Abstract:Oil exploration activities are rapidly increasing in Arctic marine areas with potentially higher risks of oil spills to the environment. Water temperatures in Arctic marine areas are simultaneously increasing as a result of global warming. Potential effects of a combination of increased water temperature and exposure to the PAH pyrene were investigated on fecal pellet and, egg production and hatching success of two copepod species, Calanus finmarchicus and Calanus glacialis, sampled in Disko Bay, Greenland on 23–25 April 2008. The two species were exposed daily to nominal pyrene concentrations of 0-0.01-0.1-1-10-100 nM at water temperatures of 0.5, 5 and 8°C for 9 and 7 days, respectively. Daily measurements of faecal pellet production, egg production and hatching showed different responses of the two species to the applied stressors. When temperature increased, low concentrations of pyrene caused a decrease in faecal pellet production by C. finmarchicus, whereas C. glacialis faecal pellet production showed no negative response to pyrene exposure when temperatures increased. Pyrene exposure decreased egg production of C. finmarchicus at all temperatures, but the species was more sensitive at 0.5 and 8°C. A lag period of 1 day before egg production began was prolonged with several days when warmer water was combined with pyrene exposure. Egg production by C. glacialis was only negatively affected by pyrene in a dose-dependent manner at 0.5°C. Hatching success in both species was not affected by pyrene, where increased water temperatures led to a higher hatching success. In conclusion, C. glacialis seemed to be the less sensitive of the two species to the stress combination of increased water temperature and pyrene exposure. As a consequence of the differential responses of the two species, their competition can be impaired with a consequent impact on energy transfer between trophic levels.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号