首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exposure to ultrafine particles and PM2.5 in four Sydney transport modes
Authors:Luke D Knibbs  Richard J de Dear
Institution:1. Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States;2. Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States;3. Department of Mechanical Engineering, Penn State Greater Allegheny, McKeesport, PA 15132, United States
Abstract:Concentrations of ultrafine (<0.1 μm) particles (UFPs) and PM2.5 (<2.5 μm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm?3 and 22.6 (automobile) to 29.6 (bus) μg m?3, respectively, and a statistically significant difference (p < 0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm?3 and 9.5 (train) to 78.7 (train) μg m?3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号