首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atmospherically deposited major and trace elements in the winter snowpack along a gradient of altitude in the Central Pyrenees: The seasonal record of long-range fluxes over SW Europe
Authors:Montserrat Bacardit  Lluís Camarero
Institution:1. The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;2. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;3. International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract:The chemistry of high mountain snowpacks is a result of the long-range atmospheric transport and deposition of elements. Pyrenean snowpacks contain information about the fluxes of elements over SW Europe in winter. Here we analysed Al, Ti, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb in the 2004–05 winter snowpack in the Central Pyrenees, at an altitude range of 1820–3200 m a.s.l. Ni, As, Se and Cd were not detected in most cases. The concentrations of the remaining elements were comparable to those found in other high mountain areas in Europe and North America considered representative of regional background of atmospheric deposition in populated areas. In contrast, our measurements were higher than those of polar areas, which represent the global background. Single measurements of concentrations and snow accumulation were subject to considerable spatial variability, which may be attributable to strong wind drift and other post-depositional processes. The major ions chemistry of the snow indicated three possible origins for the solutes: terrigenous dust, sea salt spray and polluting S and N aerosols. We found no association between Cu, Zn and Pb and any of these possible sources. This observation therefore indicates that these elements were not preferentially bound to any particular kind of aerosol. Snow collected at altitudes of up to 2050 m a.s.l. presented higher concentrations of several elements than snow above this altitude, thereby indicating a local influence. Snow collected above 2300 m a.s.l. was therefore more representative of broad regional inputs. At these higher altitudes, snow was not enriched in Al, Ti, Mn, Fe or As compared with the composition of the upper continental crust and the local lithology, and these elements (except Mn) appeared almost exclusively in the particulate fraction. This observation indicates that Al, Ti, Mn, Fe and As were present mainly as part of dust particles of terrigenous origin. In contrast, Cu, Zn, and Pb presented medium to high enrichment factors and showed a higher proportion of soluble forms, thereby indicating their polluting character.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号