首页 | 本学科首页   官方微博 | 高级检索  
     


Roadside aerosol study using hygroscopic,organic and volatility TDMAs: Characterization and mixing state
Authors:Petri Tiitta  Pasi Miettinen  Petri Vaattovaara  Jorma Joutsensaari  Tuukka Petäjä  Annele Virtanen  Tomi Raatikainen  Pasi Aalto  Harri Portin  Sami Romakkaniemi  Harri Kokkola  Kari E.J. Lehtinen  Markku Kulmala  Ari Laaksonen
Affiliation:1. Climatology and Environmental Meteorology, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany;2. Department of Applied Climatology and Landscape Ecology, Faculty of Biology, University of Duisburg–Essen, Campus Essen, D-45127 Essen, Germany
Abstract:Traffic-related aerosol particles are ubiquitous in the urban atmosphere. As they are produced at ground level, they can also cause adverse health effects to urban dwellers. However, knowledge of the formation, transformation and chemically resolved size distribution of urban ultrafine particles is incomplete. Thus, more of these measurements are needed for better assessment of ambient air quality and its potential health effects. The particle number concentration, aerosol black carbon (BC) concentration and size distribution of traffic-related aerosols were measured near two major roads in Kuopio, Finland, from 16 June to 5 July, 2004. Furthermore, the properties of roadside aerosol particles were examined with the Tandem Differential Mobility Analyzer technique (TDMA). A suite of TDMA instruments relying on water (hygroscopic TDMA) and ethanol (organic TDMA) condensation as well as heating (volatility TDMA) were deployed to study the composition of the nucleation and Aitken mode particles (Dp = 10–50 nm) formed from vehicle exhaust. The results show that a simple three-component model was able to reproduce characteristic insoluble, organic and water-soluble volume fractions. Insoluble constituents were dominant in the Aitken mode particles, whereas organic compounds dominated the nucleation mode sizes. On average, only a small volume fraction was water-soluble, but a clear external mixing was observed particularly when enough time was allowed after the tail pipe emissions. The contribution of the insoluble material was seen to increase as a function of particle size, being typically less than 10% at 10 nm and between 20 and 50% at 50 nm, in contrast to the organic fraction, which decreased from about 80% at nucleation mode size range to 50–60% at 50 nm.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号