首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a condensed SAPRC-07 chemical mechanism
Authors:William P.L. Carter
Affiliation:1. Environment Science and Biomedical Metrology Division, CSIR-NPL, New Delhi, India;2. School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India;3. Dyal Singh College, University of Delhi, New Delhi, India;1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China;2. Chengdu Academy of Environmental Sciences, Chengdu 610072, China;3. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;4. State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China;5. Beijing Municipal Environmental Monitoring Center, Beijing 100048, China;1. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China;2. State Joint Key Laboratory of Environmental Simulation and Pollution Control, Beijing 100871, PR China
Abstract:The development of a condensed version of the SAPRC-07 mechanism, designated CS07A, is described. It is comparable in size to CB05 and was derived directly from detailed SAPRC-07, which serves as the basis for its predictive capability and evaluation against chamber data. It incorporates the more condensed and approximate peroxy radical lumped operator method employed in SAPRC-99, and condensations involving removing or lumping less reactive compounds, lumping some product species in isoprene or aromatic mechanisms with other species with similar mechanisms using reactivity weighting, removing some compounds and reactions that are rapidly reversed, and using fewer model species to represent emitted alkanes and similar species. It gives predictions of O3, total PANs and OH radicals that are very close to the standard SAPRC-07 mechanism for airshed models used as the starting point, but predicts about 15% more H2O2. Use of CS07A is suitable for models where the priority is O3 formation, while the less condensed version should be used if more accurate hydroperoxide predictions are a priority.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号