Numerical calculations for a model of the near-shore circulation in a lake subject to two diurnal forcing mechanisms are presented. The first mechanism is a heating/cooling term in the heat equation representing the daytime heating and nighttime cooling of the diurnal cycle. The second is a periodic surface stress modelling a sea-breeze/gully wind system typical of some coastal regions. The two forcing mechanisms can either act together or against each other depending on their relative phase. The numerical solutions are compared with previously published analytical solutions and used to explore the extra dynamics associated with non-linear effects (specifically advection). The latter dynamics include the formation of gravity currents and unstable density profiles leading to secondary circulation.