Planktonic bioluminescence in the pack ice and the marginal ice zone of the Beaufort Sea |
| |
Authors: | D. Lapota D. E. Rosenberger S. H. Lieberman |
| |
Affiliation: | (1) Marine Environment Branch, Naval Ocean Systems Center, Code 522, 92152-5000 San Diego, California, USA;(2) Computer Sciences Corporation, 4045 Hancock Street, 92110-5164 San Diego, California, USA |
| |
Abstract: | An icebreaker cruise into the Beaufort Sea in the fall of 1986 provided a unique opportunity for studying planktonic bioluminescence in ice fields and in the marginal ice zone. Bathyphotometer casts (bioluminescence intensity, seawater temperature, beam attenuation coefficient, and salinity) and biological collections were made to a depth of 100 m. A light budget, which describes the planktonic species responsible for the measured bioluminescence, and a dinoflagellate species budget were constructed from the mean light output from luminescent plankton and plankton counts. The vertical distribution of bioluminescence among the ice stations was similar. The maximum intensities were 2 to 8×106 photons s-1 cm-3 in the upper 50 m of the sea-ice interface. The marginal ice zone station (MIZ) exhibited a maximum intensity of 2 to 3×108 photons s-1 cm-3 between 5 and 30 m depth. At Ice Station 2, Metridia longa and their nauplii contributed approximately 80% of stimulable bioluminescence in the upper 10 m but, overall, Protoperidinium spp. dinoflagellates contributed most of the light to a depth of 100 m. In the MIZ, Protoperidinium spp. dinoflagellates contributed 90% of the light within the upper 10 m, decreasing to 43% of the contributed light at a depth of 40 m. Below 40 m, dinoflagellate bioluminescence decreased to a few percent of the total to a depth of 90 m. Metridia spp. copepods contributed more than 50% of the light at depths from 40 to 90 m. Ostracods, larvaceans, and euphausiid furcilia contributed <1% of all bioluminescence at all depths sampled. Correlation analyses between measured bioluminescence (photons s-1 cm-3), the number of bioluminescent dinoflagellates and the light budget for the MIZ indicated highly significant associations: r=0.919, p=0.001, and r=0.912, p<0.001, respectively (Student's two-tailed t-tests). Bioluminescence was negatively correlated with seawater salinity at all stations (p=0.001). Maximum bioluminescence was measured in the less saline surface waters at all stations. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|