首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanisms of chromium and arsenite adsorption by amino-functionalized SBA-15
Authors:Yunhai Wu  Jianxin Zhou  Yanping Jin  Julin Cao  Palizhati Yilihan  Yajun Wen  Yunying Wu
Institution:1. Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China
2. College of Environment, Hohai University, Nanjing, 210098, China
3. Department of Chemistry, Hanshan Normal University, Chaozhou, Guangdong Province, China
Abstract:The adsorption of Cr(VI) and As(III) by amino-functionalized SBA-15 (NH2-SBA-15) from single and binary systems were investigated in this work. The effects of pH and temperature on the adsorption of NH2-SBA-15 were studied. Adsorption kinetics, isotherm model, and thermodynamics were studied to analyze the experimental data. pH 2 was the optimum condition for the adsorption of Cr(VI) and pH 4 for As(III) adsorption. Increasing temperature had a positive effect on the removal of both Cr(VI) and As(III). The Freundlich isotherm model can depict the adsorption process best. The pseudo-second-order kinetic model fitted well with the kinetic data of Cr(VI) and As(III) in the single-component system. In the binary system, the adsorption of As(III) by NH2-SBA-15 was slightly enhanced with the presence of Cr(VI); however, As(III) had no obvious effect on the removal of Cr(VI). Regeneration experiments indicated that 0.1 mol/L NaHCO3 was an efficient desorbent for the recovery of Cr(VI) and As(III) from NH2-SBA-15; the desorption rates for Cr(VI) and As(III) were 91.6 and 33.59 %, respectively. After five recycling cycles, the removal rates were 88 and 7 % for Cr(VI) and As(III) adsorption by NH2-SBA-15, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号