首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nestmate recognition in social insects: overcoming physiological constraints with collective decision making
Authors:Brian R Johnson  Ellen van Wilgenburg  Neil D Tsutsui
Institution:(1) Department of Environmental Science, Policy & Management, University of California, Berkeley, 130 Mulford Hall, MC3114, Berkeley, CA 94720-3114, USA;(2) Department of Zoology, University of Melbourne, Melbourne, Victoria, 3010, Australia
Abstract:Social insects rank among the most abundant and influential terrestrial organisms. The key to their success is their ability to form tightly knit social groups that perform work cooperatively, and effectively exclude non-members from the colony. An extensive body of research, both empirical and theoretical, has explored how optimal acceptance thresholds could evolve in individuals, driven by the twin costs of inappropriately rejecting true nestmates and erroneously accepting individuals from foreign colonies. Here, in contrast, we use agent-based modeling to show that strong nestmate recognition by individuals is often unnecessary. Instead, highly effective nestmate recognition can arise as a colony-level property from a collective of individually poor recognizers. Essentially, although an intruder can get by one defender when their odor cues are similar, it is nearly impossible to get past many defenders if there is the slightest difference in cues. The results of our models match observed rejection rates in studies of ants, wasps, and bees. We also show that previous research in support of the optimal threshold theory approach to the problem of nestmate recognition can be alternatively viewed as evidence in favor of the collective formation of a selectively permeable barrier that allows in nestmates (at a significant cost) while rejecting non-nestmates. Finally, this work shows that nestmate recognition has a stronger task allocation component than previously thought, as colonies can nearly always achieve perfect nestmate recognition if it is cost effective for them to do so at the colony level.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号