首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Feeding responses of the bivalves Crassostrea gigas and Mytilus trossulus to chemical composition of fresh and aged kelp detritus
Authors:J Levinton  J Ward  S Shumway
Institution:Department of Ecology and Evolution, State University of New York, Stony Brook, NY 11794, USA,
Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA,
Abstract:The chemical composition of kelps (e.g. polyphenolics) deters grazing by herbivores, but kelp detritus is potentially a source of nutrition for suspension feeders. The effects of kelp detritus derived from two species Agarum fimbriatum Harvey and Costaria costata (Turner) Saunders] on feeding of oysters, Crassostrea gigas Thunberg, and mussels, Mytilus trossulus Gould, were examined in feeding experiments. Fresh and aged kelp particles were sequentially presented in combination with the microalga Rhodomonas lens at an initial total concentration of 5᎒-4 ml-1. Aging of kelp particles for 4 days in seawater significantly reduced the concentration of polyphenolics without changing the total carbon or nitrogen content. Clearance rates of both mussels and oysters were significantly lower in the presence of fresh versus aged kelp particles, and clearance rates declined overall with declining polyphenolic concentrations. Video endoscopy was used to examine feeding selectivity at the level of the gill in oysters in the same food treatments used in the clearance rate experiments. Comparison of particle composition in the water versus the pseudofeces in both oysters and mussels was also used as a measure of feeding selectivity. When presented with R. lens in combination with fresh and aged kelp particles selectivity for R. lens tended to be greater against fresh than aged particles, and there was some indication that this was stronger for A. fimbriatum than for C. costata particles. The ability to select was lower at very high polyphenolic concentrations, which may reflect poisoning of sensory binding sites. These data suggest that bivalves distinguish among particles of varying chemical composition and respond by changing their clearance rates and their selectivity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号