首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photooxidation of naphthalenesulfonic acids: comparison between processes based on O(3), O(3)/activated carbon and UV/H(2)O(2)
Authors:Sánchez-Polo M  Rivera-Utrilla J  Méndez-Díaz J D  Canonica S  von Gunten U
Institution:Departamento de Química Inorgánica, Campus Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain.
Abstract:The aim of the present study was to analyze and compare the efficacy of UV photodegradation with that of different advanced oxidation processes (O(3), UV/H(2)O(2), O(3)/activated carbon) in the degradation of naphthalenesulfonic acids from aqueous solution and to investigate the kinetics and the mechanism involved in these processes. Results obtained showed that photodegradation with UV radiation (254 nm) of 1-naphthalenesulfonic, 1,5-naphthalendisulfonic and 1,3,6-naphthalentrisulfonic acids is not effective. Presence of duroquinone and 4-carboxybenzophenone during UV irradiation (308-410 nm) of the naphthalenesulfonic acids increased the photodegradation rate. Addition of H(2)O(2) during irradiation of naphthalenesulfonic acids accelerated their elimination, due to the generation of ()OH radicals in the medium. Comparison between UV photodegradation 254 m and the advanced oxidation processes (O(3), O(3)/activated carbon and UV/H(2)O(2)) showed the low-efficacy of the former in the degradation of these compounds from aqueous medium. Thus, among the systems studied, those based on the use of UV/H(2)O(2) and O(3)/activated carbon were the most effective in the oxidation of these contaminants from the medium. This is because of the high-reactivity of naphthalenesulfonic acids with the *OH radicals generated by these two systems. This was confirmed by the values of the reaction rate constant of *OH radicals with these compounds k(OH), obtained by competitive kinetics (5.7 x 10(9) M(-1) s(-1), 5.2 x 10(9) M(-1) s(-1) and 3.7 x 10(9) M(-1) s(-1) for NS, NDS and NTS, respectively).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号