首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of an oil and gas-production effluent on the colonization potential of giant kelp (Macrocystis pyrifera) zoospores
Authors:D C Reed  R J Lewis
Institution:(1) Coastal Research Center, Marine Science Institute, University of California at Santa Barbara, 93106 Santa Barbara, California, USA;(2) Present address: Department of Eorestry, Fisheries and Wildlife, University of Nebraska, 68583-0814 Lincoln, Nebraska, USA
Abstract:Point sources of pollution (e.g. industrial and municipal outfalls) may produce ecological impacts at distant locations if pollutants affect dispersive propagules. We used laboratory experiments to determine how water-column exposure to produced water (=the aqueous fraction of oil and gas production that is typically discharged into coastal waters) influences the colonization potential of giant kelp (Macrocystis pyrifera) zoospores on the bottom. Zoospores were maintained in suspension at relatively low densities in 18-liter containers and exposed to one of five concentrations of produced water for varying amounts of time. Zoospore swimming generally decreased with increasing produced-water concentration and exposure duration; however, the specific pattern of decrease differed between experimental trials done on different dates. The effect of exposure duration on the ability of swimming zoospores to attach to plastic dishes placed on the bottom varied with produced-water concentration. Zoospores placed in produced-water concentrations of 1 and 10% showed a steady decline in their ability to attach with increased exposure; lower concentrations of produced water had no such effects. The percentage of zoospores that germinated after attachment varied tremendously with exposure duration and date of experimental trial. Zoospores that settled during the first 12 h after release had very poor rates of germination, indicative of a short precompetent period. Surprisingly, exposure of suspended zoospores to high concentrations of produced water during the first 12 h reduced this precompetent period and greatly improved germination success on the bottom. The magnitude of this enhancement, however, varied among dates. The results suggest that adverse effects of discharging produced water on planktonic zoospores of giant kelp would most likely be limited to the immediate vicinity of the outfall.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号