首页 | 本学科首页   官方微博 | 高级检索  
     检索      

废旧三元锂离子电池回收利用碳足迹
引用本文:宋晓聪,杜帅,谢明辉,邓陈宁,郭静,沈鹏,赵慈,陈忱.废旧三元锂离子电池回收利用碳足迹[J].环境科学,2024,45(6):3459-3467.
作者姓名:宋晓聪  杜帅  谢明辉  邓陈宁  郭静  沈鹏  赵慈  陈忱
作者单位:中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012;中国环境科学研究院环境技术工程有限公司, 北京 100012
基金项目:中国环境科学研究院国家环境保护生态工业重点实验室开放基金项目(2022KFF-06);宁波市重大科技攻关项目(20212ZDYF020047)
摘    要:公路运输是我国交通运输领域主要温室气体排放源,新能源汽车行业作为实现交通运输领域“双碳”目标的重要抓手,未来面临大批动力电池报废情况,为量化评估废旧锂电池回收利用行业产生的碳减排效益,从生命周期角度构建废旧三元锂电池回收利用碳足迹核算模型,通过优化电力结构和运输结构,对废旧锂电池回收利用的碳减排潜力作预测评估,此外,使用误差传播方程进行不确定性分析保证碳足迹结果的可靠有效.结果表明,当前中国企业使用湿法技术回收1 kg废旧三元锂电池的碳足迹为-2760.90 g(定向循环工艺)和-3752.78 g(循环再造工艺),碳足迹的不确定性分别为16 %(定向循环工艺)和15 %(循环再造工艺).从碳排放贡献率分析,再生产品阶段是废旧三元锂电池湿法回收利用减碳首要贡献来源,电池获取、拆解和末端处置阶段是增碳主要来源.相比于优化运输结构,通过优化电力结构,可有效实现更大的碳减排潜力,协同优化情景下,相比于优化前可实现14 %~19 %的碳减排,与原生产品相比定向循环工艺和循环再造工艺分别可实现9 %和11 %的减排潜力.

关 键 词:废旧锂电池  湿法回收  碳足迹  减排潜力  不确定性分析
收稿时间:2023/7/31 0:00:00
修稿时间:2023/9/4 0:00:00

Carbon Footprint of Spent Ternary Lithium-Ion Battery Waste Recycling
SONG Xiao-cong,DU Shuai,XIE Ming-hui,DENG Chen-ning,GUO Jing,SHEN Peng,ZHAO Ci,CHEN Chen.Carbon Footprint of Spent Ternary Lithium-Ion Battery Waste Recycling[J].Chinese Journal of Environmental Science,2024,45(6):3459-3467.
Authors:SONG Xiao-cong  DU Shuai  XIE Ming-hui  DENG Chen-ning  GUO Jing  SHEN Peng  ZHAO Ci  CHEN Chen
Institution:State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;Chinese Research Academy of Environmental Sciences Environmental Technology & Engineering Co., Ltd., Beijing 100012, China
Abstract:Road transport is the primary source of greenhouse gas emissions in China''s transportation field. As an important means to achieve the "double carbon" goal in the transportation field, the new energy automobile industry will face a large number of power battery scrapping in the future. In order to quantitatively assess the carbon emission reduction benefits generated by the spent ternary lithium-ion battery waste recycling industry, the carbon footprint accounting model of spent ternary lithium-ion battery waste recycling and utilization was constructed from the life cycle perspective. By optimizing the power structure and transportation structure, the carbon emission reduction potential of spent ternary lithium-ion battery waste recycling was predicted and evaluated. In addition, the uncertainty analysis was conducted using the propagation of uncertainty equation to ensure the reliability and effectiveness of the carbon footprint results. The results showed that the current carbon footprint of Chinese enterprises using wet technology to recover 1 kg waste lithium batteries was -2 760.90 g (directional recycling process) and -3 752.78 g (recycling process), and the uncertainty of the carbon footprint was 16 % (directional recycling process) and 15 % (recycling process), respectively. From the analysis of carbon emission contribution, the regenerated product stage was the primary source of carbon reduction in the wet recycling and utilization of waste ternary lithium batteries, whereas the battery acquisition, disassembly, and end treatment stages were the main sources of carbon increase. Compared to optimizing the transportation structure, optimizing the power structure could effectively achieve greater carbon emission reduction potential. Under the collaborative optimization scenario, compared to that before optimization, 14 %-19 % carbon emission reduction could be achieved. Compared with native products, the directional circulation process and recycling process could achieve 9 % and 11 % emission reduction potential, respectively.
Keywords:spent lithium battery  wet recovery  carbon footprint  emission reduction potential  uncertainty
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号