首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Performance Evaluation of Integral and Analytical Plume Rise Algorithms
Authors:Ronald L Petersen
Institution:Cermak Peterka Petersen, Inc. , Fort Collins , Colorado , USA
Abstract:The purpose of this study was to evaluate the performance of current regulatory algorithms for predicting plume rise for refinerytype sources (short stacks and a wide range of source conditions) and the performance of new or alternate algorithms which may provide better estimates. To meet the objectives, five plume rise algorithms were statistically evaluated against ten field and laboratory plume rise data bases. Two forms of the Briggs plume rise equations were tested because they are almost exclusively used in current EPA regulatory models. Two modified Briggs equations were tested to assess how simple modifications can Improve the accuracy of the estimates. The fifth algorithm was a numerical solution to the basic equations for conservation of mass, momentum, and energy often referred to as an Integral plume rise algorithm. This algorithm was selected because It handles the wide range of source and atmospheric boundary-layer conditions that affect trajectories of plumes from refinery stacks.

Ten independent plume rise data bases were assembled that covered a wide range of source and meteorological conditions. From the data bases, a total of 107 different data sets were obtained and each data set included plume rise observations versus downwind distance for one source and meteorological condition. Each model was run for each data set and the root-mean-square and mean error between model and observation was computed for use in statistically evaluating model performance.

The statistical evaluation of the algorithms showed that the rms error (considering all data bases) for the Integral plume rise algorithm was approximately 30 percent less than the errors for all other algorithms tested. This difference was significant at the 95 percent confidence level. The results suggest that improved plume rise estimates in regulatory models applied to refineries and other appropriate sources could be achieved to reduce costs and improve ambient air quality estimates through the use of an integral plume rise algorithm.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号