首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Ag–AgBr/TiO2/RGO nanocomposite: Synthesis, characterization, photocatalytic activity and aggregation evaluation
摘    要:Ag–AgBr/TiO_2 supported on reduced graphene oxide(Ag–AgBr/TiO_2/RGO) with different mass ratios of grapheme oxide(GO) to TiO_2 were synthesized via a facile solvothermal-photo reduction method. Compared to the single-, two-and three-component nanocomposites,the four-component nanocomposite, Ag–AgBr/TiO_2/RGO-1 with mass ratio of GO to TiO_2at 1%, exhibited a much higher photocatalytic activity for the degradation of penicillin G(PG)under white light-emitting diode(LED-W) irradiation. The PG degradation efficiency increased with the increase of mass ratio of GO to TiO_2 from 0.2% to 1%, then it decreased with the increase of mass ratio of GO to TiO_2 from 1% to 5%. The zeta potentials of RGO-nanocomposites became more negative with the presence of humic acid(HA) due to the negatively charged HA adsorption, resulting in the shift of points of zero charge to lower values of pH. The aggregations of nanocomposites were more significant due to the bridging effect of HA. Furthermore, the aggregated particle sizes were larger for RGO-nanocomposites compared to other nanoparticles, due to the bindings of the carboxylic and phenolic functional groups in HA with the oxygen-containing functional groups in the RGO-nanocomposites.The microfiltration(MF) membrane was effective for the nanocomposites separation. In the continuous flow through submerged membrane photoreactor(sMPR) system, backwashing operation could efficiently reduce membrane fouling and recover TiO_2, and thus indirectly facilitate the PG removal.

收稿时间:2016/1/25 0:00:00
修稿时间:2016/3/25 0:00:00
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号