首页 | 本学科首页   官方微博 | 高级检索  
     检索      

生物硅藻土反应器处理雨水泵站截流污水中试
引用本文:陈永康,陆斌,柴晓利,常飞.生物硅藻土反应器处理雨水泵站截流污水中试[J].环境工程,2020,38(12):6-12.
作者姓名:陈永康  陆斌  柴晓利  常飞
作者单位:1. 上海理工大学 环境与建筑学院, 上海 200093;
基金项目:上海市虹口区环保局科研项目
摘    要:分流制排水系统雨污混接严重所造成的放江污染是河道黑臭的主要原因之一。对此,以A1/O1/A2/O2工艺和粉体强化技术为基础,研发了1款一体化生物硅藻土反应器,以水质波动较大的雨水泵站截流污水为原水,探索工艺参数对污水中污染物去除效果的影响,以及枯水期污水与丰水期污水处理运行时微生物种群结构的差异性。结果表明:反应器内硅藻土浓度为3 g/L,进行枯水期污水处理时,最佳运行条件为Q=1.5 m3/h,O1池ρ(DO)为1.5~2.5 mg/L,R=50%,R=100%,经处理后出水达到GB 3838—2002《地表水环境质量标准》的地表水质Ⅴ类标准;进行丰水期污水处理时,最佳运行条件是Q=1.0 m3/h,O1池ρ(DO)为2.5~3.5 mg/L,R=200%,R=100%,PAC投加量为23 mg/L,A2池碳源投加量折合ρ(COD)为60 mg/L,经处理后出水达到浙江省DB 33/2169—2018《城镇污水处理厂主要水污染物排放标准》中表2排放标准。高通量测序结果表明,枯水期污水处理运行时,Proteobacteria(59.25%)为优势菌门,Gammaproteobacteria(31.57%)为优势菌纲,反硝化菌属Dechloromona(7.76%)为优势菌属;丰水期污水处理时,Proteobacteria(46.02%)为优势菌门,Bacteroidia(32.71%)为优势菌纲,norank-Saprospiracea(20.65%)为优势菌属。硅藻土发挥了微生物载体及助沉的作用,增加了生物黏性,提高了生化系统内污泥浓度,扩大了反应器的处理范围,对生物硅藻土反应器有良好的应用前景。

关 键 词:生物硅藻土    A/O/A/O    雨水泵站截流污水    微生物种群
收稿时间:2019-12-09

PILOT TEST OF TREATING SEWAGE FROM PUMPING STATION WITH A BIO-DIATOMITE REACTOR
CHEN Yong-kang,LU Bin,CHAI Xiao-li,CHANG Fei.PILOT TEST OF TREATING SEWAGE FROM PUMPING STATION WITH A BIO-DIATOMITE REACTOR[J].Environmental Engineering,2020,38(12):6-12.
Authors:CHEN Yong-kang  LU Bin  CHAI Xiao-li  CHANG Fei
Institution:1. University of Shanghai for Science and Technology, Shanghai 200093, China;2. Tongji University, Shanghai 200092, China
Abstract:One of the main reasons for the blackness and odors of the river is the discharge pollution caused by the serious mixing of the diversion drainage system. An integrative bio-diatomite bioreactor was developed based on A1/O1/A2/O2 process and powdery microorganism technology. The removal efficiency of pollutants in the water was studied under different operation conditions, taking the intercepted sewage of pumping station with great fluctuation of water quality as raw water. Furthermore, we also compared the difference in microbial community structure for dry-weather sewage and wet-weather sewage treatment, respectively. When the concentration of diatomite was 3 g/L, the results indicted that the optimal operation conditions for dry-weather sewage treatment when the inlet sewage flow was 1.5 m3/h were as follows: the DO in the O1 tank between 1.5~2.5 mg/L, internal reflux of 50% and external reflux of 100%, the treated water reached the surface V standard of GB 3838—2002. However, for wet-weather sewage treatment when the inlet sewage was 1.5 m3/h, the optimal operation conditions were as follows: the DO in the O1 tank between 2.5~3.5 mg/L, internal reflux 200% and external reflux 100%, PAC addition amount 23 mg/L and carbon source addition amount equal to 60 mg/L COD, the treated effluent was up to discharge standards Table 2 of main water pollutants for urban sewage treatment plants (DB 33/2169—2018) of Zhejiang province. The results of high-throughput sequencing showed that the dominant phylum, class and species in dry-weather sewage treatment system were Proteobacteria (59.25%), Gammaproteobacteria (31.57%) and Dechloromona (7.76%), respectively. While, for wet-weather sewage treatment system, Proteobacteria (46.02%), Bacteroidia (32.71%), and norank-Saprospiracea (20.65%) were the dominant phylum, class and species. Diatomite played the role of microbial carrier and sink aid, increased the biological viscosity, improved the sludge concentration in the biochemical system, and expanded the treatment scope of the reactor. Bio-diatomite reactor had a good application prospect.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《环境工程》浏览原始摘要信息
点击此处可从《环境工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号