首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of hazard range for the natural gas jet released from a high-pressure pipeline: A computational parametric study
Authors:Gang Dong  Lin Xue  Yun Yang  Juntao Yang
Institution:1. Department of Biological Sciences, Redeemer''s University, Osun State, Nigeria;2. School of Chemistry & Physics, University of KwaZulu-Natal, Durban 4000, South Africa;3. Department of Chemical Sciences, Lead City University, Ibadan, Nigeria;4. Department of Zoology, University of Ibadan, Oyo State, Nigeria;5. Department of Mathematics, Redeemer''s University, Osun State, Nigeria
Abstract:In the present study, the hazard range of the natural gas (NG) jet released from a high-pressure pipeline was investigated. A one-dimensional integral model was combined with a release model to calculate the length and width (i.e., size), and the shape of NG jet release. The physical parameters affecting the jet release of NG were categorized into three types: source release, environmental and time parameters. The effects of each type of parameters on the gas jet release rate, size and shape were evaluated systematically. The results show that all of these parameters have important influence on the hazard range of NG jet release. The source release parameters, including the pipeline length, the operation pressure of the pipeline, the release hole diameter and the pipe diameter, dominate the gas release rate through a hole and therefore the length and width of gas jet release. The gas jet release rate and size are found to be highly correlative with these parameters in terms of power curve regression analysis. The environmental parameters including the atmospheric stability, the ambient wind speed and the source height, have no influence on the gas jet release rate but have influence on the hazard range of gas jet by the turbulent mixing and dilution of NG with air. The time parameters including the concentration averaged time and the valve closing time which are related to the unsteady state jet release of NG, also show the influence on the hazard range of gas jet release. The results show that the decreasing valve closing time and increasing gas concentration averaged time are in favor of reducing the length and width of gas jet release. In addition, these computational parametric studies indicate that the parameters of source release and time have no significant influence on the shape of gas jet release (i.e., jet length/width ratio, LWR) which can maintain the values between 7 and 8. However, the environmental parameters have influence on the shape of gas jet release. These comprehensive investigations provide useful database of evaluating the hazard range for NG jet released from a hole on a high-pressure pipeline and also provide the foundation of decision-making for further fire and/or explosion evaluation and people evacuation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号