首页 | 本学科首页   官方微博 | 高级检索  
     


Alkaloid tolerance in Manduca sexta and phylogenetically related sphingids (Lepidoptera: Sphingidae)
Authors:Michael Wink  Vera Theile
Affiliation:Institut für Pharmazeutische Biologie, Universit?t Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany, DE
Abstract:Summary. Nicotine tolerance is well known for Manduca sexta. It also occurs in several other sphingids of the subfamilies Macroglossinae and Sphinginae. Only members of the subfamily Smerinthinae appear to be more susceptible to nicotine intoxication. Phylogenetic trees have been reconstructed from mitochondrial 16S rDNA and nuclear DNA to map nicotine tolerance.?The nicotine binding site of both α-subunits of nicotinic acetylcholine receptors (nAChR) have been amplified and sequenced. No apparent amino acid substitution can be seen in the putative nicotine binding site of the α-subunits of nAChR from nicotine tolerant and nicotine sensitive sphingids. Thus, a simple target-site modification can be ruled out as a cause for nicotine tolerance. This finding agrees with feeding experiments: larvae of M. sexta and other sphingids of the Macroglossinae and Sphinginae not only tolerated nicotine, but also many other alkaloids that affect neuroreceptors other than acetylcholine receptors (nAChR, mAChR).?Only 10 to 20% of nicotine injected into larvae of nicotine-tolerant taxa could be recovered later as free nicotine, nicotine N-oxide or cotinine, i.e., 80 to 90% must have been converted to polar conjugates or degradation products which are not detectable with the methods applied. Usually more than 98% of the recoverable alkaloids were found in the faeces. Excretion reached a maximum 6 h after injection in tolerant taxa. Larvae of Manduca sexta, which were reared on a nicotine-rich diet, showed higher nicotine degradation and faster nicotine elimination than na?ve larvae. Application of the cytochrome P450 inhibitor SKF 525A (proadifen) reduced the formation of nicotine N-oxide and the rate of alkaloid degradation. Thus, an inducible detoxification mechanism, coupled with a rapid and inducible excretion, appear to be a strategy in Sphingidae that helps them to live on host plants rich in otherwise toxic secondary metabolites. Received 23 March 2001; accepted 4 August 2001.
Keywords:.Manduca sexta—   Sphingidae —   nicotine —   alkaloids —   nicotinic acetylcholine receptor —   16S rRNA phylogeny —   alkaloid metabolism —   alkaloid tolerance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号