Primary and secondary organic aerosol in an urban/industrial site: Sources, health implications and the role of plastic enriched waste burning |
| |
Authors: | Panagiotis Georgios Kanellopoulos Eleni Verouti Eirini Chrysochou Konstantinos Koukoulakis Evangelos Bakeas |
| |
Affiliation: | National and Kapodistrian University of Athens, Laboratory of Analytical Chemistry, Department of Chemistry, Zografou, GR-15784, Greece |
| |
Abstract: | PM10 samples were collected from an urban/industrial site nearby Athens, where uncontrolled burning activities occur. PAHs, monocarboxylic, dicarboxylic, hydroxycarboxylic and aromatic acids, tracers from BVOC oxidation, biomass burning tracers and bisphenol A were determined. PAH, monocarboxylic acids, biomass burning tracers and bisphenol A were increased during autumn/winter, while BSOA tracers, dicarboxylic- and hydroxycarboxylic acids during summer. Regarding aromatic acids, different sources and formation mechanisms were indicated as benzoic, phthalic and trimellitic acids were peaked during summer whereas p-toluic, isophthalic and terephthalic were more abundant during autumn/winter. The Benzo[a]pyrene-equivalent carcinogenic power, carcinogenic and mutagenic activities were calculated showing significant (p < 0.05) increases during the colder months. Palmitic, succinic and malic acids were the most abundant monocarboxylic, dicarboxylic and hydrocarboxylic acids during the entire sampling period. Isoprene oxidation was the most significant contributor to BSOA as the isoprene-SOA compounds were two times more abundant than the pinene-SOA (13.4 ± 12.3 and 6.1 ± 2.9 ng/m3, respectively). Ozone has significant impact on the formation of many studied compounds showing significant correlations with: isoprene-SOA (r = 0.77), hydrocarboxylic acids (r = 0.69), pinene-SOA (r = 0.63),dicarboxylic acids (r = 0.58), and the sum of phthalic, benzoic and trimellitic acids (r = 0.44). PCA demonstrated five factors that could explain sources including plastic enriched waste burning (30.8%), oxidation of unsaturated fatty acids (23.0%), vehicle missions and cooking (9.2%), biomass burning (7.7%) and oxidation of VOCs (5.8%). The results highlight the significant contribution of plastic waste uncontrolled burning to the overall air quality degradation. |
| |
Keywords: | Corresponding author. Primary organic aerosol (POA) Secondary organic aerosol (SOA) Plastic waste burning emissions GC/MS Source apportionment PCA |
|
| 点击此处可从《环境科学学报(英文版)》浏览原始摘要信息 |
|
点击此处可从《环境科学学报(英文版)》下载全文 |
|