首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Large-Eddy Simulations of the Atmospheric Boundary Layer Using a New Subgrid-Scale Model – I. Slightly unstable and neutral cases
Authors:Ding  Feng  Pal Arya  S  Lin  Yuh-Lang
Institution:(1) Department of marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695-8208, U.S.A.
Abstract:Subgrid-scale (SGS) modeling is a long-standing problem and a critical component in the large-eddy simulation (LES) of atmospheric boundary layer. A variety of SGS models with different levels of sophistication have been proposed for different needs, such as Smagorinsky's (1963) eddy viscosity model, Mason and Thomson's (1992) stochastic backscattering model, and Sullivan et al.'s (1994) near surface model. A modified Smagorinsky SGS model has been used in the LES version of Terminal Area Simulation System (TASS-LES). It has successfully simulated the buoyancy-dominated, convective atmospheric boundary layer flows, while simulations of the shear-dominated, slightly unstable, neutral, and stably stratified boundary layer flows are not so good. For the later, we used a simpler version of Sullivan et al.'s subgrid-scale model in which turbulent kinetic energy equation is not included and the model is still the first-order closure. A momentum profile matching approach is adopted in the proposed model. A series of simulations for shear-dominated, slightly unstable and neutral boundary layers are performed using different subgrid-scale models and different grid resolutions. The results are compared with those of Sullivan et al. (1994) and with empirical similarity relations for the surface layer. The simulations with the new SGS model appear to be far more satisfactory than those with the modified Smagorinsky model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号