首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Glucosinolates and trichomes track tissue value in two sympatric mustards
Authors:Traw M Brian  Feeny Paul
Institution:Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA. mbtraw@pitt.edu
Abstract:Glucosinolates, trichomes, nitrogen, and carbon are not distributed uniformly through the canopies of mustards. In this study, we asked whether glucosinolate concentrations and trichome densities in two sympatric mustards, Brassica kaber and B. nigra, are highest in tissues of greatest value to the plant. We also asked whether nitrogen or carbon content is the stronger predictor of tissue value, and what fraction of each resource is incorporated in glucosinolates. To quantify tissue values, we removed three equal-area fractions (lower, middle, and upper) from the canopies of B. kaber and B. nigra in the greenhouse, as well as whole canopies of naturally growing B. nigra in the field, at two times during growth and measured reductions in their performance relative to controls. We also measured trichome density in both experiments, as well as glucosinolate, nitrogen, and carbon concentrations for the equal-area fractions in the greenhouse. We found that upper leaves had the highest glucosinolate concentrations, trichome densities, and tissue values. Furthermore, young plants in the field had higher trichome densities and tissue values than did older plants. Collectively, these data provide strong support for optimal defense theory and are among the first such evidence for glucosinolates and for physical defenses. The positive relationship between trichome density and tissue value was strong even after we accounted for the effects of leaf expansion. While nitrogen and carbon have both received attention as currencies for trade-offs, our data suggest that nitrogen concentration is a significantly better predictor of tissue value in these two mustard species. Interestingly, <1% of the nitrogen or carbon in leaves was incorporated in glucosinolates, which may explain why glucosinolates lack a consistent response to nitrogen fertilization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号