首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)2 and Ni(OH)2
Authors:Giovanni Cagnetta  Kunlun Zhang  Qiwu Zhang  Jun Huang  Gang Yu
Institution:1. State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory of Emerging Organic Contaminants Control (BKLEOCC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China2. School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract: PE ball milling pretreatment induces higher H2 production and purity by gasification. Ca(OH)2 reacts at solid state with PE boosting H2 and capturing CO2. Ca(OH)2 significantly reduces methanation side-reaction. Polymer thermal recycling for hydrogen production is a promising process to recover such precious element from plastic waste. In the present work a simple but efficacious high energy milling pre-treatment is proposed to boost H2 generation during polyethylene gasification. The polymer is co-milled with calcium and nickel hydroxides and then it is subjected to thermal treatment. Results demonstrate the key role played by the calcium hydroxide that significantly ameliorates hydrogen production. It reacts in solid state with the polyethylene to form directly carbonate and hydrogen. In this way, the CO2 is immediately captured in solid form, thus shifting the equilibrium toward H2 generation and obtaining high production rate (>25 L/mol CH2). In addition, high amounts of the hydroxide prevent excessive methane formation, so the gas product is almost pure hydrogen (~95%).
Keywords:Hydrogen production  Gasification  Plastic waste  High energy ball milling  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号