首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metabolism, tissue disposition, and excretion of 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) in male Sprague-Dawley rats
Authors:Hakk Heldur  Larsen Gerald  Bowers Joseph
Institution:USDA, ARS, Biosciences Research Laboratory, 1605 Albrecht Blvd, PO Box 5674, University Station, Fargo, ND 58105-5647, USA. hakkh@fargo.ars.usda.gov
Abstract:A single oral dose of 14C] 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) was administered to conventional and bile-duct cannulated male Sprague-Dawley rats. Tissue disposition, excretion and metabolism was determined. BTBPE is a low-volume brominated flame retardant used in resins or plastics, and toxicity data in peer-reviewed journals is extremely limited. BTBPE was fairly insoluble in lipophilic solutions, which made dose preparation difficult. The great majority of 14C (>94%) was excreted in the feces of both groups of rats at 72 h, and tissue retention was minimal. Lipophilic tissues contained the highest concentrations of BTBPE, e.g. thymus, adipose tissue, adrenals, lung, and skin. Metabolites were excreted in the urine, bile and feces, but at a very low level. Fecal metabolites were characterized as monohydroxylated, monohydroxylated with debromination, dihydroxylated/debrominated on a single aromatic ring, monohydroxylated on each aromatic ring with accompanying debromination, and cleavage on either side of the ether linkage to yield tribromophenol and tribromophenoxyethanol. Despite a limited quantity of stable metabolites extractable in the feces, non-extractable 14C levels were relatively high (39% of the 0-24 h fecal 14C), which suggested that BTBPE could be metabolically activated in the rat and covalently bound to fecal proteins and/or lipids. It was concluded that limited absorption and metabolism of BTBPE would occur by ingestion in mammals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号