首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature and salinity: two climate change stressors affecting early development of the New Zealand sea urchin Evechinus chloroticus
Authors:Natalí J. Delorme  Mary A. Sewell
Affiliation:1. Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, P.O. Box 349, Warkworth, 0941, New Zealand
2. School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
Abstract:Temperature and salinity are important environmental factors affecting the normal functioning of marine animals, particularly animals such as sea urchins living in shallow waters and tide pools. Here, we evaluated the effect of different combinations of temperature and salinity on early embryos of the endemic New Zealand sea urchin Evechinus chloroticus. Animals were collected at Matheson’s Bay (36º18′17′′S; 174º47′51′′E) in north-eastern New Zealand in February 2013. Embryos were exposed to five salinities (29, 31, 34, 35 and 37 ppt) and two temperatures (18 and 21 °C) during the first 24 h of development. Low salinity (29 ppt) affected all parameters (fertilization, development rate, gastrulation and normal development), with ca. 50 % of embryos surviving at 29 ppt, whereas seawater temperature only affected development rate and gastrulation. An increase in temperature from 18 to 21 °C minimized the negative effect of low salinity (≤31 ppt) on development rate and gastrulation of E. chloroticus. Overall, the results of this study suggest that early embryos of E. chloroticus have developmental plasticity to withstand reductions in salinity up to 29 ppt; however, it is still unknown whether the surviving embryos will be able to complete larval development at low salinities, particularly whether the embryos and larvae are carried into extreme environments such as estuaries where salinity is even lower. Multistressor studies are very important for climate change research as multiple environmental factors will act together in the wild, having major consequences for development and recruitment of marine invertebrates.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号