首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机(SVM)的民用飞机重着陆智能诊断研究
引用本文:聂磊,黄圣国,舒平,王旭辉. 基于支持向量机(SVM)的民用飞机重着陆智能诊断研究[J]. 中国安全科学学报, 2009, 19(7)
作者姓名:聂磊  黄圣国  舒平  王旭辉
作者单位:1. 南京航空航天大学民航学院,南京,210016
2. 中国民航局航空安全技术中心,北京,100028
基金项目:国家自然科学基金资助 
摘    要:针对国内航空公司对于重着陆的判断方法存在的不足,提出采用支持向量机(SVM)建立重着陆的智能诊断模型;分析对重着陆产生影响的相关因素,在力学基础上揭示了重着陆的产生原理;利用快速存取记录器中记录的多个飞行参数的信息,采用B737机型的实际样本数据进行训练和验证。结果表明:该方法能有效判断出是否发生重着陆,其准确率高达92.86%,证明该重着陆智能诊断方法具有较强实际应用价值,为后续研究奠定了基础。

关 键 词:重着陆  飞行品质监控  智能诊断模型  支持向量机(SVM)  核函数

Intelligent Diagnosis for Hard Landing of Aircraft Based on SVM
NIE Lei,HUANG Sheng-guo,SHU Ping,WANG Xu-hui. Intelligent Diagnosis for Hard Landing of Aircraft Based on SVM[J]. China Safety Science Journal, 2009, 19(7)
Authors:NIE Lei  HUANG Sheng-guo  SHU Ping  WANG Xu-hui
Abstract:Due to lots of deficiencies existing in the hard landing diagnosis method of domestic airlines,an intelligent diagnosis model was established based on support vector machine for the first time. Related factors influencing hard landing were analyzed,and principles for hard landing was revealed based on mechanics. Then,the model was trained and verified up to 92.86% in accuracy with the data sample recorded by the quick access recorders from the B737 aircraft. The results show that the model could diagnose the hard landing effectively and is of important value in application. This research lays a good foundation for the subsequent research.
Keywords:hard landing   flight operational quality assurance   intelligent diagnosis model  support vector machine(SVM)   kernel function
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号