首页 | 本学科首页   官方微博 | 高级检索  
     


Distribution,enrichment mechanism and risk assessment for fluoride in groundwater: a case study of Mihe-Weihe River Basin,China
Authors:Xingyue Qu  Peihe Zhai  Longqing Shi  Xingwei Qu  Ahmer Bilal  Jin Han  Xiaoge Yu
Abstract: ● High fluorine is mainly HCO3·Cl-Na and HCO3-Na type. ● F decreases with the increase of depth to water table. ● High fluoride is mainly affected by fluorine-containing minerals and weak alkaline. ● Fluorine pollution is mainly in the north near Laizhou Bay (wet season > dry season). ● Groundwater samples have a high F health risk (children > adults). Due to the unclear distribution characteristics and causes of fluoride in groundwater of Mihe-Weihe River Basin (China), there is a higher risk for the future development and utilization of groundwater. Therefore, based on the systematic sampling and analysis, the distribution features and enrichment mechanism for fluoride in groundwater were studied by the graphic method, hydrogeochemical modeling, the proportionality factor between conventional ions and factor analysis. The results show that the fluorine content in groundwater is generally on the high side, with a large area of medium-fluorine water (0.5–1.0 mg/L), and high-fluorine water is chiefly in the interfluvial lowlands and alluvial-marine plain, which mainly contains HCO3·Cl-Na- and HCO3-Na-type water. The vertical zonation characteristics of the fluorine content decrease with increasing depth to the water table. The high flouride groundwater during the wet season is chiefly controlled by the weathering and dissolution of fluorine-containing minerals, as well as the influence of rock weathering, evaporation and concentration. The weak alkaline environment that is rich in sodium and poor in calcium during the dry season is the main reason for the enrichment of fluorine. Finally, an integrated assessment model is established using rough set theory and an improved matter element extension model, and the level of groundwater pollution caused by fluoride in the Mihe-Weihe River Basin during the wet and dry seasons in the Shandong Peninsula is defined to show the necessity for local management measures to reduce the potential risks caused by groundwater quality.
Keywords:Groundwater in the Mihe-Weihe River Basin  Distribution characteristics of fluorine  Factors influencing fluoride  Enrichment mechanism of fluorine  Hydrogeochemical modeling  Pollution and risk assessment  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号